Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
1.
Article in Chinese | WPRIM | ID: wpr-879273

ABSTRACT

Fetal electrocardiogram signal extraction is of great significance for perinatal fetal monitoring. In order to improve the prediction accuracy of fetal electrocardiogram signal, this paper proposes a fetal electrocardiogram signal extraction method (GA-LSTM) based on genetic algorithm (GA) optimization with long and short term memory (LSTM) network. Firstly, according to the characteristics of the mixed electrocardiogram signal of the maternal abdominal wall, the global search ability of the GA is used to optimize the number of hidden layer neurons, learning rate and training times of the LSTM network, and the optimal combination of parameters is calculated to make the network topology and the mother body match the characteristics of the mixed signals of the abdominal wall. Then, the LSTM network model is constructed using the optimal network parameters obtained by the GA, and the nonlinear transformation of the maternal chest electrocardiogram signals to the abdominal wall is estimated by the GA-LSTM network. Finally, using the non-linear transformation obtained from the maternal chest electrocardiogram signal and the GA-LSTM network model, the maternal electrocardiogram signal contained in the abdominal wall signal is estimated, and the estimated maternal electrocardiogram signal is subtracted from the mixed abdominal wall signal to obtain a pure fetal electrocardiogram signal. This article uses clinical electrocardiogram signals from two databases for experimental analysis. The final results show that compared with the traditional normalized minimum mean square error (NLMS), genetic algorithm-support vector machine method (GA-SVM) and LSTM network methods, the method proposed in this paper can extract a clearer fetal electrocardiogram signal, and its accuracy, sensitivity, accuracy and overall probability have been better improved. Therefore, the method could extract relatively pure fetal electrocardiogram signals, which has certain application value for perinatal fetal health monitoring.


Subject(s)
Algorithms , Electrocardiography , Female , Fetal Monitoring , Humans , Memory, Short-Term , Pregnancy , Support Vector Machine
2.
Article in Chinese | WPRIM | ID: wpr-879250

ABSTRACT

Early accurate detection of inferior myocardial infarction is an important way to reduce the mortality from inferior myocardial infarction. Regrading the existing problems in the detection of inferior myocardial infarction, complex model structures and redundant features, this paper proposed a novel inferior myocardial infarction detection algorithm. Firstly, based on the clinic pathological information, the peak and area features of QRS and ST-T wavebands as well as the slope feature of ST waveband were extracted from electrocardiogram (ECG) signals leads Ⅱ, Ⅲ and aVF. In addition, according to individual features and the dispersion between them, we applied genetic algorithm to make judgement and then input the feature with larger degree into support vector machine (SVM) to realize the accurate detection of inferior myocardial infarction. The proposed method in this paper was verified by Physikalisch-Technische Bundesanstalt (PTB) diagnostic electrocardio signal database and the accuracy rate was up to 98.33%. Conforming to the clinical diagnosis and the characteristics of specific changes in inferior myocardial infarction ECG signal, the proposed method can effectively make precise detection of inferior myocardial infarction by morphological features, and therefore is suitable to be applied in portable devices development for clinical promotion.


Subject(s)
Algorithms , Databases, Factual , Electrocardiography , Humans , Inferior Wall Myocardial Infarction , Support Vector Machine
3.
Article in Chinese | WPRIM | ID: wpr-879247

ABSTRACT

At present the prediction method of epilepsy patients is very time-consuming and vulnerable to subjective factors, so this paper presented an automatic recognition method of epilepsy electroencephalogram (EEG) based on common spatial model (CSP) and support vector machine (SVM). In this method, the CSP algorithm for extracting spatial characteristics was applied to the detection of epileptic EEG signals. However, the algorithm did not consider the nonlinear dynamic characteristics of the signals and ignored the time-frequency information, so the complementary characteristics of standard deviation, entropy and wavelet packet energy were selected for the combination in the feature extraction stage. The classification process adopted a new double classification model based on SVM. First, the normal, interictal and ictal periods were divided into normal and paroxysmal periods (including interictal and ictal periods), and then the samples belonging to the paroxysmal periods were classified into interictal and ictal periods. Finally, three categories of recognition were realized. The experimental data came from the epilepsy study at the University of Bonn in Germany. The average recognition rate was 98.73% in the first category and 99.90% in the second category. The experimental results show that the introduction of spatial characteristics and double classification model can effectively solve the problem of low recognition rate between interictal and ictal periods in many literatures, and improve the identification efficiency of each period, so it provides an effective detecting means for the prediction of epilepsy.


Subject(s)
Algorithms , Electroencephalography , Epilepsy/diagnosis , Humans , Signal Processing, Computer-Assisted , Support Vector Machine
4.
Article in Chinese | WPRIM | ID: wpr-879246

ABSTRACT

Both feature representation and classifier performance are important factors that determine the performance of computer-aided diagnosis (CAD) systems. In order to improve the performance of ultrasound-based CAD for breast cancers, a novel multiple empirical kernel mapping (MEKM) exclusivity regularized machine (ERM) ensemble classifier algorithm based on self-paced learning (SPL) is proposed, which simultaneously promotes the performance of both feature representation and the classifier. The proposed algorithm first generates multiple groups of features by MEKM to enhance the ability of feature representation, which also work as the kernel transform in multiple support vector machines embedded in ERM. The SPL strategy is then adopted to adaptively select samples from easy to hard so as to gradually train the ERM classifier model with improved performance. This algorithm is verified on a B-mode ultrasound dataset and an elastography ultrasound dataset, respectively. The results show that the classification accuracy, sensitivity and specificity on B-mode ultrasound are (86.36±6.45)%, (88.15±7.12)%, and (84.52±9.38)%, respectively, and the classification accuracy, sensitivity and specificity on elastography ultrasound are (85.97±3.75)%, (85.93±6.09)%, and (86.03±5.88)%, respectively. It indicates that the proposed algorithm can effectively improve the performance of ultrasound-based CAD for breast cancers with the potential for application.


Subject(s)
Algorithms , Breast Neoplasms/diagnostic imaging , Computers , Diagnosis, Computer-Assisted , Humans , Support Vector Machine , Ultrasonography
5.
Article in Chinese | WPRIM | ID: wpr-888202

ABSTRACT

Error self-detection based on error-related potentials (ErrP) is promising to improve the practicability of brain-computer interface systems. But the single trial recognition of ErrP is still a challenge that hinters the development of this technology. To assess the performance of different algorithms on decoding ErrP, this paper test four kinds of linear discriminant analysis algorithms, two kinds of support vector machines, logistic regression, and discriminative canonical pattern matching (DCPM) on two open accessed datasets. All algorithms were evaluated by their classification accuracies and their generalization ability on different sizes of training sets. The study results show that DCPM has the best performance. This study shows a comprehensive comparison of different algorithms on ErrP classification, which could give guidance for the selection of ErrP algorithm.


Subject(s)
Algorithms , Brain , Brain-Computer Interfaces , Discriminant Analysis , Electroencephalography , Support Vector Machine
6.
Journal of Biomedical Engineering ; (6): 1062-1071, 2021.
Article in Chinese | WPRIM | ID: wpr-921846

ABSTRACT

Glioma is the most common malignant brain tumor and classification of low grade glioma (LGG) and high grade glioma (HGG) is an important reference of making decisions on patient treatment options and prognosis. This work is largely done manually by pathologist based on an examination of whole slide image (WSI), which is arduous and heavily dependent on doctors' experience. In the World Health Organization (WHO) criteria, grade of glioma is closely related to hypercellularity, nuclear atypia and necrosis. Inspired by this, this paper designed and extracted cell density and atypia features to classify LGG and HGG. First, regions of interest (ROI) were located by analyzing cell density and global density features were extracted as well. Second, local density and atypia features were extracted in ROI. Third, balanced support vector machine (SVM) classifier was trained and tested using 10 selected features. The area under the curve (AUC) and accuracy (ACC) of 5-fold cross validation were 0.92 ± 0.01 and 0.82 ± 0.01 respectively. The results demonstrate that the proposed method of locating ROI is effective and the designed features of density and atypia can be used to predict glioma grade accurately, which can provide reliable basis for clinical diagnosis.


Subject(s)
Brain Neoplasms/diagnostic imaging , Glioma/diagnostic imaging , Humans , Magnetic Resonance Imaging , Neoplasm Grading , Support Vector Machine
7.
Journal of Biomedical Engineering ; (6): 1035-1042, 2021.
Article in Chinese | WPRIM | ID: wpr-921843

ABSTRACT

It is very important for epilepsy treatment to distinguish epileptic seizure and non-seizure. In this study, an automatic seizure detection algorithm based on dual density dual tree complex wavelet transform (DD-DT CWT) for intracranial electroencephalogram (iEEG) was proposed. The experimental data were collected from 15 719 competition data set up by the National Institutes of Health (NINDS) in Kaggle. The processed database consisted of 55 023 seizure epochs and 501 990 non-seizure epochs. Each epoch was 1 second long and contained 174 sampling points. Firstly, the signal was resampled. Then, DD-DT CWT was used for EEG signal processing. Four kinds of features include wavelet entropy, variance, energy and mean value were extracted from the signal. Finally, these features were sent to least squares-support vector machine (LS-SVM) for learning and classification. The appropriate decomposition level was selected by comparing the experimental results under different wavelet decomposition levels. The experimental results showed that the features selected in this paper were different between seizure and non-seizure. Among the eight patients, the average accuracy of three-level decomposition classification was 91.98%, the sensitivity was 90.15%, and the specificity was 93.81%. The work of this paper shows that our algorithm has excellent performance in the two classification of EEG signals of epileptic patients, and can detect the seizure period automatically and efficiently.


Subject(s)
Algorithms , Electroencephalography , Epilepsy/diagnosis , Humans , Seizures/diagnosis , Signal Processing, Computer-Assisted , Support Vector Machine , Wavelet Analysis
8.
Article in Chinese | WPRIM | ID: wpr-921822

ABSTRACT

The automatic detection of arrhythmia is of great significance for the early prevention and diagnosis of cardiovascular diseases. Traditional arrhythmia diagnosis is limited by expert knowledge and complex algorithms, and lacks multi-dimensional feature representation capabilities, which is not suitable for wearable electrocardiogram (ECG) monitoring equipment. This study proposed a feature extraction method based on autoregressive moving average (ARMA) model fitting. Different types of heartbeats were used as model inputs, and the characteristic of fast and smooth signal was used to select the appropriate order for the arrhythmia signal to perform coefficient fitting, and complete the ECG feature extraction. The feature vectors were input to the support vector machine (SVM) classifier and K-nearest neighbor classifier (KNN) for automatic ECG classification. MIT-BIH arrhythmia database and MIT-BIH atrial fibrillation database were used to verify in the experiment. The experimental results showed that the feature engineering composed of the fitting coefficients of the ARMA model combined with the SVM classifier obtained a recall rate of 98.2% and a precision rate of 98.4%, and the


Subject(s)
Algorithms , Atrial Fibrillation , Electrocardiography , Heart Rate , Humans , Signal Processing, Computer-Assisted , Support Vector Machine
9.
Article in Chinese | WPRIM | ID: wpr-888624

ABSTRACT

OBJECTIVE@#According to the digital image features of corneal opacity, a multi classification model of support vector machine (SVM) was established to explore the objective quantification method of corneal opacity.@*METHODS@#The cornea digital images of dead pigs were collected, part of the color features and texture features were extracted according to the previous experience, and the SVM multi classification model was established. The test results of the model were evaluated by precision, sensitivity and @*RESULTS@#In the classification of corneal opacity, the highest @*CONCLUSIONS@#The SVM multi classification model can classify the degree of corneal opacity.


Subject(s)
Animals , Corneal Opacity , Support Vector Machine , Swine
10.
Article in Chinese | WPRIM | ID: wpr-879162

ABSTRACT

In order to establish a rapid and non-destructive evaluation method for the identification of Armeniacae Semen Amarum and Persicae Semen from different origins, the spectral information of Armeniacae Semen Amarum and Persicae Semen in the range of 898-1 751 nm was collected based on hyperspectral imaging technology. Armeniacae Semen Amarum and Persicae Semen from different origins were collected as research objects, and a total of 720 Armeniacae Semen Amarum samples and 600 Persicae Semen samples were used for authenticity discrimination. The region of interest(ROI) and the average reflection spectrum in the ROI were obtained, followed by comparing five pre-processing methods. Then, partial least squares discriminant analysis(PLS-DA), support vector machine(SVM), and random forest(RF) method were established for classification models, which were evaluated by the confusion matrix of prediction results and receiver operating characteristic curve(ROC). The results showed that in the three sample sets, the se-cond derivative pre-processing method and PLS-DA were the best model combinations. The classification accuracy of the test set under the 5-fold cross-va-lidation was 93.27%, 96.19%, and 100.0%, respectively. It was consistent with the confusion matrix of the predicted results. The area under the ROC curve obtained the highest values of 0.992 3, 0.999 6, and 1.000, respectively. The study revealed that the near-infrared hyperspectral imaging technology could accurately identify the medicinal materials of Armeniacae Semen Amarum and Persicae Semen from different origins and distinguish the authentication of these two varieties.


Subject(s)
Drugs, Chinese Herbal , Hyperspectral Imaging , Least-Squares Analysis , Semen , Support Vector Machine , Technology
11.
Article in Chinese | WPRIM | ID: wpr-878970

ABSTRACT

Polygonatum cyrtonema is a famous bulk medicinal material which is the medicinal and edible homologous. With the implementation of the traditional Chinese medicine industry to promote precise poverty alleviation, the planting area of P. cyrtonema in Jinzhai is becoming larger and larger in recent years. Jinzhai is located in the Dabie Mountainous area, which is the largest mountain area and county in Anhui Province. The cultivation of P. cyrtonema is scattered, and the traditional Chinese medicine resources investigation is not only inefficient and accurate. In this study,the "Resource 3"(ZY-3) remote sensing image was used as the best observation phase,and the method of support vector machine classification was used. The method of parallelepiped, minimum distance, mahalanob is distance, maximum likelihood classification and neural net were used to classify and recognize the P. cyrtonema in the whole region. In order to determine the accuracy and reliability of classification results, the accuracy of six supervised classification results was evaluated by confusion matrix method, and the advantages and disadvantages of six supervised classification methods for extracting P. cyrtonema field planting area were compared and analyzed. The results showed that the method of support vector machine classification was more appropriate than that using other classification methods. It provides a scientific basis for monitoring the planting area of P. cyrtonemain field.


Subject(s)
Medicine, Chinese Traditional , Polygonatum , Reproducibility of Results , Research Design , Support Vector Machine
12.
Braz. arch. biol. technol ; 64: e21210007, 2021. tab, graf
Article in English | LILACS | ID: biblio-1339314

ABSTRACT

Abstract Improving the accuracy of protein secondary structure prediction has been an important task in bioinformatics since it is not only the starting point in obtaining tertiary structure in hierarchical modeling but also enhances sequence analysis and sequence-structure threading to help determine structure and function. Herein we present a model based on DSPRED classifier, a hybrid method composed of dynamic Bayesian networks and a support vector machine to predict 3-state secondary structure information of proteins. We used the SCOPe (Structural Classification of Proteins-extended) database to train and test the model. The results show that DSPRED reached a Q3 accuracy rate of 82.36% when trained and tested using proteins from all SCOPe classes. We compared our method with the popular PSIPRED on the SCOPe test datasets and found that our method outperformed PSIPRED.


Subject(s)
Protein Structure, Secondary , Support Vector Machine , Artificial Intelligence , Computational Biology/methods
13.
Journal of Biomedical Engineering ; (6): 1056-1064, 2020.
Article in Chinese | WPRIM | ID: wpr-879236

ABSTRACT

In the process of lower limb rehabilitation training, fatigue estimation is of great significance to improve the accuracy of intention recognition and avoid secondary injury. However, most of the existing methods only consider surface electromyography (sEMG) features but ignore electrocardiogram (ECG) features when performing in fatigue estimation, which leads to the low and unstable recognition efficiency. Aiming at this problem, a method that uses the fusion features of ECG and sEMG signal to estimate the fatigue during lower limb rehabilitation was proposed, and an improved particle swarm optimization-support vector machine classifier (improved PSO-SVM) was proposed and used to identify the fusion feature vector. Finally, the accurate recognition of the three states of relax, transition and fatigue was achieved, and the recognition rates were 98.5%, 93.5%, and 95.5%, respectively. Comparative experiments showed that the average recognition rate of this method was 4.50% higher than that of sEMG features alone, and 13.66% higher than that of the combined features of ECG and sEMG without feature fusion. It is proved that the feature fusion of ECG and sEMG signals in the process of lower limb rehabilitation training can be used for recognizing fatigue more accurately.


Subject(s)
Algorithms , Electrocardiography , Electromyography , Fatigue/diagnosis , Humans , Lower Extremity , Support Vector Machine
14.
Journal of Biomedical Engineering ; (6): 1037-1044, 2020.
Article in Chinese | WPRIM | ID: wpr-879234

ABSTRACT

To enhance the accuracy of computer-aided diagnosis of adolescent depression based on electroencephalogram signals, this study collected signals of 32 female adolescents (16 depressed and 16 healthy, age: 16.3 ± 1.3) with eyes colsed for 4 min in a resting state. First, based on the phase synchronization between the signals, the phase-locked value (PLV) method was used to calculate brain functional connectivity in the θ and α frequency bands, respectively. Then based on the graph theory method, the network parameters, such as strength of the weighted network, average characteristic path length, and average clustering coefficient, were calculated separately (


Subject(s)
Adolescent , Brain/diagnostic imaging , Diagnosis, Computer-Assisted , Electroencephalography , Female , Humans , Support Vector Machine
16.
Article in Chinese | WPRIM | ID: wpr-828203

ABSTRACT

Emotion is a series of reactions triggered by a specific object or situation that affects a person's physiological state and can, therefore, be identified by physiological signals. This paper proposes an emotion recognition model. Extracted the features of physiological signals such as photoplethysmography, galvanic skin response, respiration amplitude, and skin temperature. The SVM-RFE-CBR(Recursive Feature Elimination-Correlation Bias Reduction-Support Vector Machine) algorithm was performed to select features and support vector machines for classification. Finally, the model was implemented on the DEAP dataset for an emotion recognition experiment. In the rating scale of valence, arousal, and dominance, the accuracy rates of 73.5%, 81.3%, and 76.1% were obtained respectively. The result shows that emotional recognition can be effectively performed by combining a variety of physiological signals.


Subject(s)
Arousal , Emotions , Galvanic Skin Response , Humans , Photoplethysmography , Support Vector Machine
17.
Article in Chinese | WPRIM | ID: wpr-828201

ABSTRACT

OBJECTIVE@#Feature extraction of breast tumors is very important in the breast tumor detection (benign and malignant) in ultrasound image. The traditional quantitative description of breast tumors has some shortcomings, such as inaccuracy. A simple and accurate feature extraction method has been studied.@*METHODS@#In this paper, a new method of boundary feature extraction was proposed. Firstly, the shape histogram of ultrasound breast tumors was constructed. Secondly, the relevant boundary feature factors were calculated from a local point of view, including sum of maximum curvature, sum of maximum curvature and peak, sum of maximum curvature and standard deviation. Based on the boundary features, shape features and texture features, the linear support vector machine classifiers for benign and malignant breast tumor recognition was constructed.@*RESULTS@#The accuracy of boundary features in the benign and malignant breast tumors classification was 82.69%. The accuracy of shape features was 73.08%. The accuracy of texture features was 63.46%. The classification accuracy of the three fusion features was 86.54%.@*CONCLUSIONS@#The classification accuracy of boundary features was higher than that of texture features and shape features. The classification method based on multi-features has the highest accuracy and it describes the benign and malignant tumors from different angles. The research results have practical value.


Subject(s)
Algorithms , Breast Neoplasms , Diagnostic Imaging , Humans , Support Vector Machine , Ultrasonography
18.
Article in Chinese | WPRIM | ID: wpr-827936

ABSTRACT

This study was aimed to develop a simple, rapid and reliable method for identifying Armeniacae Semen Amarum from different processed products and various rancidness degrees. The objective odor information of Armeniacae Semen Amarum was obtained by electronic nose. 105 batches of Armeniacae Semen Amarum samples were studied, including three processed products of Armeniacae Semen Amarum, fried Armeniacae Semen Amarum and peeled Armeniacae Semen Amarum, as well as the samples with various rancidness degrees: without rancidness, slight rancidness, and rancidness. The discriminant models of different processed products and rancidness degrees of Armeniacae Semen Amarum were established by Support Vector Machine(SVM), respectively, and the models were verified based on back estimation of blind samples. The results showed that there were differences in the characteristic response radar patterns of the sensor array of different processed products and the samples with different rancidness degrees. The initial identification rate was 95.90% and 92.45%, whilst validation recognition rate was 95.38% and 91.08% in SVM identification models. In conclusion, differentiation in odor of different processed and rancidness degree Armeniacae Semen Amarum was performed by the electronic nose technology, and different processed and rancidness degrees Armeniacae Semen Amarum were successfully discriminated by combining with SVM. This research provides ideas and methods for objective identification of odor of traditional Chinese medicine, conducive to the inheritance and development of traditional experience in odor identification.


Subject(s)
Drugs, Chinese Herbal , Electronic Nose , Medicine, Chinese Traditional , Semen , Support Vector Machine
19.
Braz. arch. biol. technol ; 63: e20190736, 2020. tab, graf
Article in English | LILACS | ID: biblio-1132171

ABSTRACT

Abstract Obesity is the most common chronic disease, due to its ignorance in society. It gives birth to other diseases such as endocrine. The objective of this research is to analyze the different trends of each BMI category and predict its related serious consequences. Data mining based Support Vector Machine (SVM) technique has been applied for this and the accuracy of each BMI category has been calculated using Receiver Operating Characteristics (ROC), which is an effective method and potentially applied to medical data sets. The Area Under Curve (AUC) of ROC and predictive accuracy have been calculated for each classified BMI category. Our analysis shows interesting results and it is found that BMI ≥ 25 has the highest AUC and Predictive accuracy compares to other BMI, which claims a good rank of performance. From our trends, it has been explored that at each BMI precaution is mandatory even if the BMI < 18.5 and at ideal BMI too. Development of effective awareness, early monitoring and interventions can prevent its harmful effects on health.


Subject(s)
Humans , Body Mass Index , ROC Curve , Obesity/diagnosis , Area Under Curve , Data Mining , Support Vector Machine
20.
Article in Chinese | WPRIM | ID: wpr-774222

ABSTRACT

The early diagnosis of children with autism spectrum disorders (ASD) is essential. Electroencephalography (EEG) is one of most commonly used neuroimaging techniques as the most accessible and informative method. In this study, approximate entropy (ApEn), sample entropy (SaEn), permutation entropy (PeEn) and wavelet entropy (WaEn) were extracted from EEGs of ASD child and a control group, and Student's -test was used to analyze between-group differences. Support vector machine (SVM) algorithm was utilized to build classification models for each entropy measure derived from different regions. Permutation test was applied in search for optimize subset of features, with which the SVM model achieved best performance. The results showed that the complexity of EEGs in children with autism was lower than that of the normal control group. Among all four entropies, WaEn got a better classification performance than others. Classification results vary in different regions, and the frontal lobe showed the best performance. After feature selection, six features were filtered out and the accuracy rate was increased to 84.55%, which can be convincing for assisting early diagnosis of autism.


Subject(s)
Algorithms , Autism Spectrum Disorder , Classification , Diagnosis , Child , Electroencephalography , Entropy , Humans , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL