Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 208
Filter
1.
Neuroscience Bulletin ; (6): 1658-1670, 2021.
Article in English | WPRIM | ID: wpr-922653

ABSTRACT

Mechanistic target of rapamycin (mTOR) signaling governs important physiological and pathological processes key to cellular life. Loss of mTOR negative regulators and subsequent over-activation of mTOR signaling are major causes underlying epileptic encephalopathy. Our previous studies showed that UBTOR/KIAA1024/MINAR1 acts as a negative regulator of mTOR signaling, but whether UBTOR plays a role in neurological diseases remains largely unknown. We therefore examined a zebrafish model and found that ubtor disruption caused increased spontaneous embryonic movement and neuronal activity in spinal interneurons, as well as the expected hyperactivation of mTOR signaling in early zebrafish embryos. In addition, mutant ubtor larvae showed increased sensitivity to the convulsant pentylenetetrazol, and both the motor activity and the neuronal activity were up-regulated. These phenotypic abnormalities in zebrafish embryos and larvae were rescued by treatment with the mTORC1 inhibitor rapamycin. Taken together, our findings show that ubtor regulates motor hyperactivity and epilepsy-like behaviors by elevating neuronal activity and activating mTOR signaling.


Subject(s)
Animals , Hyperkinesis/genetics , Mutation/genetics , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Zebrafish/metabolism
2.
Neuroscience Bulletin ; (6): 1314-1324, 2021.
Article in English | WPRIM | ID: wpr-922627

ABSTRACT

The exacerbation of progressive multiple sclerosis (MS) is closely associated with obstruction of the differentiation of oligodendrocyte progenitor cells (OPCs). To discover novel therapeutic compounds for enhancing remyelination by endogenous OPCs, we screened for myelin basic protein expression using cultured rat OPCs and a library of small-molecule compounds. One of the most effective drugs was pinocembrin, which remarkably promoted OPC differentiation and maturation without affecting cell proliferation and survival. Based on these in vitro effects, we further assessed the therapeutic effects of pinocembrin in animal models of demyelinating diseases. We demonstrated that pinocembrin significantly ameliorated the progression of experimental autoimmune encephalomyelitis (EAE) and enhanced the repair of demyelination in lysolectin-induced lesions. Further studies indicated that pinocembrin increased the phosphorylation level of mammalian target of rapamycin (mTOR). Taken together, our results demonstrated that pinocembrin promotes OPC differentiation and remyelination through the phosphorylated mTOR pathway, and suggest a novel therapeutic prospect for this natural flavonoid product in treating demyelinating diseases.


Subject(s)
Animals , Cell Differentiation , Flavanones , Mice , Mice, Inbred C57BL , Myelin Sheath/metabolism , Oligodendroglia/metabolism , Rats , Remyelination , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
3.
Acta Physiologica Sinica ; (6): 813-820, 2021.
Article in Chinese | WPRIM | ID: wpr-921284

ABSTRACT

This study aimed to investigate the effect of lipopolysaccharide (LPS) on lipophagy in hepatocytes and the underlying mechanism. Human hepatoma cell line HepG2 was cultured in vitro, treated with 0.1 mmol/L palmitic acid (PA), and then divided into control group (0 μg/mL LPS), LPS group (10 μg/mL LPS), LPS+DMSO group and LPS+RAPA (rapamycin, 10 μmol/L) group. Lipid accumulation in hepatocytes was observed by oil red O staining. The autophagic flux of the cells was assessed using confocal laser scanning microscope after being transfected with autophagy double-labeled adenovirus (mRFP-GFP-LC3). The level of intracellular lipophagy was visualized by the colocalization of lipid droplets (BODIPY 493/503 staining) and lysosomes (lysosome marker, lysosomal associated membrane protein 1, LAMP1). The expression levels of mammalian target of rapamycin (mTOR), phosphorylated mTOR (p-mTOR), ribosome protein subunit 6 kinase 1 (S6K1), p-S6K1, LC3II/I and P62 protein were examined by Western blot. The results showed that the number of red lipid droplets stained with oil red O was significantly increased in LPS group compared with that in control group (P < 0.001). Moreover, in LPS group, the number of autophagosomes was increased, while the number of autophagolysosomes and the colocalization rate of LAMP1 and BODIPY were significantly decreased (P < 0.05). Meanwhile, the ratios of p-mTOR/mTOR and p-S6K1/S6K1, the ratio of LC3II/LC3I and the protein expression of P62 were significantly increased (P < 0.05) in LPS group. Furthermore, compared with LPS+DMSO group, RAPA treatment obviously reduced the number of lipid droplets and autophagosomes, and raised the number of autophagolysosomes and the colocalization rate of LAMP1 and BODIPY (P < 0.05). In conclusion, the results demonstrate that LPS inhibits lipophagy in HepG2 cells via activating mTOR signaling pathway, thereby aggravating intracellular lipid accumulation.


Subject(s)
Autophagy , Hep G2 Cells , Humans , Lipopolysaccharides , Palmitic Acid , Signal Transduction , TOR Serine-Threonine Kinases
4.
Chinese Medical Journal ; (24): 2465-2474, 2021.
Article in English | WPRIM | ID: wpr-921151

ABSTRACT

BACKGROUND@#Ubiquitin-conjugating enzyme E2C (UBE2C) has been shown to be associated with the occurrence of various cancers and involved in many tumorigenic processes. This study aimed to investigate the specific molecular mechanism through which UBE2C affects breast cancer (BC) proliferation.@*METHODS@#BC-related datasets were screened according to filter criteria in the Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA) database. Then differentially expressed genes (DEGs) were identified using Venn diagram analysis. By using DEGs, we conducted the following analyses including Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein-protein interaction (PPI), and survival analysis, and then validated the function of the hub gene UBE2C using quantitative reverse transcription-polymerase chain reaction (RT-qPCR), cell counting kit-8 (CCK-8) assay, transwell assay, and Western blot assay.@*RESULTS@#In total, 151 DEGs were identified from the GEO and TCGA databases. The results of GO analysis demonstrated that the DEGs were significantly enriched with mitotic nuclear division, lipid droplet, and organic acid-binding. KEGG analysis showed that the peroxisome proliferators-activated receptor (PPAR) signaling pathway, regulation of lipolysis in adipocytes, and proximal tubule bicarbonate reclamation were significantly enriched in the signal transduction pathway category. The top three hub genes that resulted from the PPI network were FOXM1, UBE2C, and CDKN3. The results of survival analysis showed a close relationship between UBE2C and BC. The results of CCK-8 and transwell assays suggested that the proliferation and invasion of UBE2C knockdown cells were significantly inhibited (P < 0.050). The results of Western blot assay showed that the level of phosphorylated phosphatase and tensin homology deleted on chromosome 10 (p-PTEN) was obviously increased (P < 0.050), whereas the levels of phosphorylated protein kinase B (p-AKT), phosphorylated mammalian target of rapamycin (p-mTOR), and hypoxia-inducible factor-1 alpha (HIF-1α) were dramatically decreased (P < 0.050) in the UBE2C knockdown cell.@*CONCLUSION@#UBE2C can promote BC proliferation by activating the AKT/mTOR signaling pathway.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms/pathology , Cell Proliferation/genetics , Computational Biology , Female , Gene Expression Regulation, Neoplastic , Humans , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics , Ubiquitin-Conjugating Enzymes/metabolism
5.
Frontiers of Medicine ; (4): 448-459, 2021.
Article in English | WPRIM | ID: wpr-888730

ABSTRACT

The ability of tumor cells to sustain continuous proliferation is one of the major characteristics of cancer. The activation of oncogenes and the mutation or inactivation of tumor suppressor genes ensure the rapid proliferation of tumor cells. The PI3K-Akt-mTOR axis is one of the most frequently modified signaling pathways whose activation sustains cancer growth. Unsurprisingly, it is also one of the most commonly attempted targets for cancer therapy. FK506 binding protein 8 (FKBP8) is an intrinsic inhibitor of mTOR kinase that also exerts an anti-apoptotic function. We aimed to explain these contradictory aspects of FKBP8 in cancer by identifying a "switch" type regulator. We identified through immunoprecipitation-mass spectrometry-based proteomic analysis that the mitochondrial protein prohibitin 1 (PHB1) specifically interacts with FKBP8. Furthermore, the downregulation of PHB1 inhibited the proliferation of ovarian cancer cells and the mTOR signaling pathway, whereas the FKBP8 level in the mitochondria was substantially reduced. Moreover, concomitant with these changes, the interaction between FKBP8 and mTOR substantially increased in the absence of PHB1. Collectively, our finding highlights PHB1 as a potential regulator of FKBP8 because of its subcellular localization and mTOR regulating role.


Subject(s)
Apoptosis , Cell Line, Tumor , Cell Proliferation , Female , Humans , Ovarian Neoplasms , Phosphatidylinositol 3-Kinases , Proteomics , Repressor Proteins , TOR Serine-Threonine Kinases , Tacrolimus Binding Proteins
6.
Article in Chinese | WPRIM | ID: wpr-879022

ABSTRACT

To screen the sensitive cell lines of active fraction from clove(AFC) on human colon cancer cells, investigate the effects of AFC on the cells proliferation and apoptosis as well as PI3 K/Akt/mTOR(phosphoinositide 3-kinase/Akt/mechanistic target of rapamycin) signaling pathways involved, and reveal the mechanism of AFC for inducing apoptosis of human colorectal carcinoma cells. Cell counting kit-8(CCK-8) assay was used to detect the cytotoxic effect of different concentrations of AFC. AFC-induced apoptosis was detected by Hoechst 33258 fluorescence staining and Annexin V-FITC/PI double staining. HCT116 cells were treated with AFC with or without pretreatment with insulin-like growth factor-Ⅰ(IGF-Ⅰ), and then the protein expression levels of caspase-3, caspase-9, poly ADP-ribose polymerase(PARP), PI3 K, p-PI3 K, Akt, p-Akt, mTOR and p-mTOR in PI3 K/Akt/mTOR signaling pathway were detected by Western blot. RESULTS:: showed that the most obvious inhibitory effect of AFC was on human colon cancer HCT116 cells, and the optimal AFC treatment time was 48 hours. After AFC treatment, typical apoptotic features such as nuclear chromatin concentration, nuclear fragmentation and apoptotic bodies appeared in a dose-dependent manner. Annexin V-FITC/PI double staining showed that as compared with the control group, 50 and 100 μg·mL~(-1) AFC groups increased the apoptosis rate of HCT116 cells significantly(P<0.001); AFC activated caspase-9, cleaved caspase-3 and cleaved PARP in a concentration-dependent manner. The protein expression levels of cleaved caspase-3/procaspase-3, cleaved PARP/PARP and caspase-9/β-actin after treatment of AFC(100 μg·mL~(-1)) were significantly different from those in the control group(P<0.001). The relative protein expression of p-PI3 K, p-Akt and p-mTOR decreased in a concentration dependent manner, while Akt and mTOR showed no significant differences among groups. The ratios of p-PI3 K/PI3 K, p-Akt/Akt and p-mTOR/mTOR in the AFC groups(50 and 100 μg·mL~(-1)) were significantly lower than those in the control group(P<0.01). Its combination with IGF-Ⅰ weakened the effect of AFC in inhibiting PI3 K/Akt/mTOR signaling pathway. The ratios of p-Akt/Akt and p-mTOR/mTOR in the AFC+IGF-Ⅰ group were significantly enhanced as compared with the AFC group(P<0.05). Apoptosis-related protein expression levels(cleaved caspase-3 and cleaved PARP) in HCT116 cells treated with AFC+IGF-Ⅰ were also down regulated. As compared with the AFC group, the ratios of cleaved caspase-3/procaspase-3 and cleaved PARP/PARP in the AFC+IGF-Ⅰ group were significantly decreased(P<0.01). In summary, AFC activated caspase-mediated cascades and induced HCT116 cells apoptosis in a dose-dependent manner, which may be associated with the inhibition of the PI3 K/Akt/mTOR signaling pathway.


Subject(s)
Apoptosis , Cell Line, Tumor , Cell Proliferation , Colonic Neoplasms/drug therapy , HCT116 Cells , Humans , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Syzygium , TOR Serine-Threonine Kinases/metabolism
8.
Frontiers of Medicine ; (4): 221-231, 2021.
Article in English | WPRIM | ID: wpr-880964

ABSTRACT

The mammalian target of rapamycin (mTOR) critically regulates several essential biological functions, such as cell growth, metabolism, survival, and immune response by forming two important complexes, namely, mTOR complex 1 (mTORC1) and complex 2 (mTORC2). mTOR signaling is often dysregulated in cancers and has been considered an attractive cancer therapeutic target. Great efforts have been made to develop efficacious mTOR inhibitors, particularly mTOR kinase inhibitors, which suppress mTORC1 and mTORC2; however, major success has not been achieved. With the strong scientific rationale, the intriguing question is why cancers are insensitive or not responsive to mTOR-targeted cancer therapy in clinics. Beyond early findings on induced activation of PI3K/Akt, MEK/ERK, and Mnk/eIF4E survival signaling pathways that compromise the efficacy of rapalog-based cancer therapy, recent findings on the essential role of GSK3 in mediating cancer cell response to mTOR inhibitors and mTORC1 inhibition-induced upregulation of PD-L1 in cancer cells may provide some explanations. These new findings may also offer us the opportunity to rationally utilize mTOR inhibitors in cancer therapy. Further elucidation of the biology of complicated mTOR networks may bring us the hope to develop effective therapeutic strategies with mTOR inhibitors against cancer.


Subject(s)
Glycogen Synthase Kinase 3 , Mechanistic Target of Rapamycin Complex 2 , Neoplasms/drug therapy , Phosphatidylinositol 3-Kinases , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases
9.
Braz. j. med. biol. res ; 54(9): e10390, 2021. graf
Article in English | LILACS | ID: biblio-1249337

ABSTRACT

Sorafenib (SOR) resistance is still a significant challenge for the effective treatment of hepatocellular carcinoma (HCC). The mechanism of sorafenib resistance remains unclear. Several microRNAs (miRNAs) have been identified as playing a role in impairing the sensitivity of tumor cells to treatment. We examined the mechanism behind the role of miR-92b in mediating sorafenib resistance in HCC cells. We detected that miR-92b expression was significantly upregulated in SOR-resistant HepG2/SOR cells compared to parental HepG2/WT cells. After transfection with miR-92b inhibitor, the proliferation of HepG2/SOR cells was remarkably weakened and rates of apoptosis significantly increased. PTEN was considered to be a functional target of miR-92b according to a luciferase reporter assay. Knockdown of PTEN significantly impaired the ability of miR-92b inhibitor on increasing sorafenib sensitivity of HepG2/SOR cells. Furthermore, we confirmed by western blotting and immunofluorescence that miR-92b can mediate sorafenib resistance by activating the PI3K/AKT/mTOR pathway in HCC cells by directly targeting PTEN. These findings further validate the mechanism of miR-92b in SOR resistance in HCC treatment.


Subject(s)
Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/drug therapy , Drug Resistance, Neoplasm , MicroRNAs/genetics , Sorafenib/pharmacology , Liver Neoplasms/genetics , Liver Neoplasms/drug therapy , Signal Transduction , Gene Expression Regulation, Neoplastic , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Cell Proliferation , PTEN Phosphohydrolase/genetics , TOR Serine-Threonine Kinases
10.
Med. lab ; 25(2): 525-534, 2021. ilus, graf
Article in Spanish | LILACS | ID: biblio-1342894

ABSTRACT

El cáncer es una causa importante de morbilidad y mortalidad en los receptores de trasplante. La combinación de infecciones virales, terapia de inmunosupresión y la alteración en el sistema inmune en los pacientes trasplantados, contribuyen al desarrollo de cáncer. El sarcoma de Kaposi es causado por el virus herpes humano 8 (VHH-8), y aunque es raro en la población general, puede ser hasta 300 veces más frecuente en los pacientes con trasplante renal. El diagnóstico de la enfermedad se realiza a menudo con base en las características de las lesiones, pero debe ser confirmado por histología. En años recientes, los inhibidores de mTOR han mostrado ser efectivos para el control del sarcoma de Kaposi en los pacientes trasplantados, ya que se interrumpe el efecto antiapoptótico y la angiogénesis dependientes de la proteína mTOR, los cuales son esenciales para el desarrollo y la propagación de células malignas. Se presentan dos casos de pacientes con sarcoma de Kaposi ganglionar, sin lesiones en piel, en nuestro centro de trasplante, quienes respondieron de manera positiva al cambio del esquema inmunosupresor con inhibidores de mTOR


Cancer is a major cause of morbidity and mortality in transplant recipients. The combination of viral infections, immunosuppression therapy and immune system dysfunction in transplant patients contribute to the development of cancer. Kaposi sarcoma is caused by human herpes virus 8 (HHV-8) and although rare in the general population, it is reported to be up to 300 times more common in kidney transplant patients. Diagnosis of the disease is often made on the basis of the characteristic appearance of lesions, but must be confirmed by histology. In recent years, mTOR inhibitors have been shown to be effective in controlling Kaposi sarcoma in transplant patients, due to disruption of the antiapoptotic effect and angiogenesis dependent on the mTOR protein, which are essential for development and propagation of malignant cells. We present two case reports of patients with Kaposi sarcoma in lymph nodes and no skin lesions, who responded well to the immunosuppressive therapy switch with mTOR inhibitors


Subject(s)
Humans , Sarcoma, Kaposi , Kidney Transplantation , Herpesvirus 8, Human , TOR Serine-Threonine Kinases , Lymph Nodes
11.
Rev. ADM ; 77(4): 197-202, jul.-ago. 2020. tab
Article in Spanish | LILACS | ID: biblio-1129803

ABSTRACT

La osteonecrosis de los maxilares está definida como la exposición de hueso necrótico en la región maxilofacial al menos por ocho semanas en pacientes que están recibiendo medicamentos antirresortivos para el tratamiento del cáncer primario o metastásico hacia el hueso, osteoporosis o enfermedad de Paget, sin historia previa de radiación. Desde el año 2003, la terminología utilizada estaba en relación con los bifosfonatos, en la actualidad ha sido introducido el término osteonecrosis de los maxilares relacionada por medicamentos (OMAM). La cirugía oral (implantología o cirugía periapical) incrementa el riesgo de OMAM, así como los desbalances concomitantes de la salud oral (inflamación dental y formación de abscesos). Las estrategias conservadoras en el tratamiento varían desde el cuidado local conservador hasta la resección quirúrgica radical del hueso necrótico. En el presente artículo se expone un análisis sistemático retrospectivo de la literatura en páginas como PubMed, ScienceDirect y Springer, Cochrane Library. Con el objetivo de resaltar el aumento de la incidencia de OMAM a nivel mundial con el uso de antirresortivos y otros medicamentos asociados en su patogenia en el Hospital Regional «General Ignacio Zaragoza¼ del ISSSTE, UNAM, en la Ciudad de México (AU)


Osteonecrosis of the jaws is defined as the exposure of necrotic bone in the maxillofacial region for at least 8 weeks in patients receiving antiresorptive medications for the treatment of primary or metastatic cancer towards the bone, osteoporosis, or Paget's disease, without previous history of radiation. Since 2003, the terminology used was related to bisphosphonates, the term medication-related osteonecrosis of the jaws has now been introduced. Oral surgery (implantology or periapical surgery) increases the risk of avascular necrosis, as well as concomitant imbalances in oral health (dental inflammation and abscess formation). Conservative strategies in treatment vary from conservative local care to radical surgical resection of the necrotic bone. In this article, a systematic retrospective analysis of the literature is presented on pages such as PubMed, Science Direct and Springer, Cochrane Library. And in which the objective is to highlight the increase in the incidence of medication related osteonecrosis of the jaws worldwide with the use of antiresorptive, and other associated medications in its pathogenesis at the Hospital Regional «General Ignacio Zaragoza¼ ISSSTE, UNAM in Mexico City (AU)


Subject(s)
Humans , Diphosphonates/adverse effects , Bisphosphonate-Associated Osteonecrosis of the Jaw , Osteoporosis , Bone Neoplasms , Angiogenesis Inhibitors , Dental Service, Hospital , TOR Serine-Threonine Kinases , Bevacizumab , Sunitinib , Mexico
12.
Int. j. morphol ; 38(3): 558-564, June 2020. tab, graf
Article in English | LILACS | ID: biblio-1098287

ABSTRACT

Chronic hepatotoxicity is a debilitating and frequently life-threatening disease resulting in progressive liver failure. The toxic chemical, thioacetamide (TAA) is used to evaluate hepatoprotective agents, and the polyphenolic compound, resveratrol was proposed as a novel treatment for diseases with hyperactivation of the mammalian target of rapamycin (mTOR) cell signaling pathway. This analysis sought to investigate the potential protective effect of resveratrol against liver injury induced by TAA via the inhibition of hepatic mTOR. Model group rats received several injections of TAA (200 mg/kg; twice a week for 8 weeks) before being sacrificed at week 10 and the protective group was pretreated with resveratrol (20 mg/kg) daily for two weeks prior to TAA injections and continued receiving both agents until the end of the experiment. Harvested liver tissues were examined using light microscopy and liver homogenates were assayed for biomarkers of inflammation and assessed the levels of mTOR protein in all animal groups. In addition, blood samples were assayed for biomarkers of liver injury enzyme. TAA substantially damaged the hepatic tissue of the model group such as infiltration of inflammatory cells, vacuolated cytoplasm, dark pyknotic nuclei, and dilated congested blood vessel that were effectively protected by resveratrol. Resveratrol also significantly (p<0.05) inhibited TAA-induced mTOR, high sensitivity c-reactive protein (hs-CRP), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in harvested liver homogenates and blood samples. Thus, we conclude that resveratrol effectively protects against TAA-induced hepatotoxicity in rats, possibly due to the inhibition of mTOR and inflammation.


La hepatotoxicidad crónica es una enfermedad debilitante y potencialmente mortal que produce insuficiencia hepática progresiva. La toxicidad del químico de la tioacetamida (TAA) se utiliza para evaluar los agentes hepatoprotectores y el compuesto polifenólico, resveratrol, se propuso como un nuevo tratamiento para enfermedades con hiperactivación de la vía de señalización celular mTOR (mammalian Target of Rapamycin). Aquí buscamos investigar el posible efecto protector del resveratrol contra la lesión hepática inducida por TAA a través de la inhibición de la vía de señalización mTOR en hepatocitos. Las ratas del grupo modelo recibieron varias inyecciones de TAA (200 mg / kg; dos veces por semana durante 8 semanas) antes de ser sacrificadas en la semana 10 y el grupo protector se trató previamente con resveratrol (20 mg / kg) diariamente durante dos semanas antes de las inyecciones de TAA y continuó recibiendo ambos agentes hasta el final del experimento. Se examinaron los tejidos hepáticos recolectados usando microscopía óptica y se analizaron los homogeneizados hepáticos para detectar biomarcadores de inflamación y se evaluaron los niveles de proteína mTOR en todos los grupos de animales. Además, se analizaron muestras de sangre para detectar biomarcadores de la enzima de lesión hepática. TAA dañó sustancialmente el tejido hepático del grupo modelo, con infiltración de células inflamatorias, citoplasma vacuolado, núcleos picnóticos oscuros y vasos sanguíneos congestionados dilatados que estaban efectivamente protegidos por el resveratrol. El resveratrol también inhibió significativamente (p <0.05) mTOR, proteína C-reactiva (hs-CRP), factor de necrosis tumoral alfa (TNF-α), interleucina-6 (IL-6), alanina aminotransferasa (ALT ) y aspartato aminotransferasa (AST) en las muestras de sangre y de hígados recolectados. En conclusión, el resveratrol protege eficazmente contra la hepatotoxicidad inducida por TAA en ratas, posiblemente debido a la inhibición de mTOR y de la inflamación.


Subject(s)
Animals , Male , Mice , Thioacetamide/toxicity , Chemical and Drug Induced Liver Injury/drug therapy , TOR Serine-Threonine Kinases/antagonists & inhibitors , Resveratrol/administration & dosage , Aspartate Aminotransferases/analysis , C-Reactive Protein/analysis , Tumor Necrosis Factor-alpha/analysis , Alanine Transaminase/analysis , Disease Models, Animal
13.
Braz. j. med. biol. res ; 53(7): e9207, 2020. tab, graf
Article in English | ColecionaSUS, LILACS, ColecionaSUS | ID: biblio-1132533

ABSTRACT

The objective of this study was to investigate the relationship between PI3K/mTOR/RhoA signaling regulated cytoskeletal rearrangements and phagocytic capacity of macrophages. RAW264.7 macrophages were divided into four groups; blank control, negative control, PI3K-RNAi, and mTOR-RNAi. The cytoskeletal changes in the macrophages were observed. Furthermore, the phagocytic capacity of macrophages against Escherichia coli is reported as mean fluorescence intensity (MFI) and percent phagocytosis. Transfection yielded 82.1 and 81.5% gene-silencing efficiencies against PI3K and mTOR, respectively. The PI3K-RNAi group had lower mRNA and protein expression levels of PI3K, mTOR, and RhoA than the blank and negative control groups (Р<0.01). The mTOR-RNAi group had lower mRNA and protein levels of mTOR and RhoA than the blank and the negative control groups (Р<0.01). Macrophages in the PI3K-RNAi group exhibited stiff and inflexible morphology with short, disorganized filopodia and reduced number of stress fibers. Macrophages in the mTOR-RNAi group displayed pronounced cellular deformations with long, dense filopodia and an increased number of stress fibers. The PI3K-RNAi group exhibited lower MFI and percent phagocytosis than blank and negative control groups, whereas the mTOR-RNAi group displayed higher MFI and percent phagocytosis than the blank and negative controls (Р<0.01). Before and after transfection, the mRNA and protein levels of PI3K were both positively correlated with mTOR and RhoA (Р<0.05), but the mRNA and protein levels of mTOR were negatively correlated with those of RhoA (Р<0.05). Changes in the phagocytic capacity of macrophages were associated with cytoskeletal rearrangements and were regulated by the PI3K/mTOR/RhoA signaling pathway.


Subject(s)
Humans , Animals , Rats , Phagocytosis/physiology , Cytoskeleton/metabolism , Phosphatidylinositol 3-Kinases/metabolism , rhoA GTP-Binding Protein/metabolism , TOR Serine-Threonine Kinases/metabolism , Macrophages/metabolism , Transfection , Signal Transduction , Blotting, Western , Gene Silencing , RNA Interference , Real-Time Polymerase Chain Reaction , RAW 264.7 Cells , Genetic Vectors
14.
Braz. j. med. biol. res ; 53(12): e9740, 2020. tab, graf
Article in English | ColecionaSUS, LILACS, ColecionaSUS | ID: biblio-1132511

ABSTRACT

Breast cancer (BC) is a commonly diagnosed cancer in females. MicroRNA-660-5p (miR-660-5p) has been reported to be involved in the occurrence and development of BC. However, the regulatory network of miR-660-5p in BC has not been fully addressed. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the enrichment of miR-660-5p and tet-eleven translocation 2 (TET2) in BC tissues and cells. Cell counting kit-8 (CCK8), flow cytometry, and transwell migration and invasion assays were used to measure cell proliferation, apoptosis, migration, and invasion. The target relationship between miR-660-5p and TET2 was confirmed by dual luciferase reporter assay. Protein expression was measured by western blot. The expression of miR-660-5p was elevated in BC, and high expression of miR-660-5p was closely related to lymph node metastasis, advanced TNM stage, and vascular invasion of BC tumors. miR-660-5p silencing inhibited cell proliferation and metastasis, but induced apoptosis of BC cells. TET2 was identified as a direct target of miR-660-5p, and the interference of TET2 partly reversed the suppressive effects of miR-660-5p silencing on the malignant potential of BC cells. miR-660-5p promoted BC progression partly through modulating TET2 and PI3K/AKT/mTOR signaling. miR-660-5p/TET2 axis might be a promising target for BC treatment.


Subject(s)
Humans , Female , Breast Neoplasms/genetics , MicroRNAs/genetics , Signal Transduction , Proto-Oncogene Proteins , Phosphatidylinositol 3-Kinases/genetics , Cell Line, Tumor , DNA-Binding Proteins , Proto-Oncogene Proteins c-akt/genetics , TOR Serine-Threonine Kinases/genetics
15.
Article in Chinese | WPRIM | ID: wpr-878867

ABSTRACT

The aim of this paper was to study the role of phosphoinositide 3-kinase(PI3 K), protein kinase B(Akt) and mamma-lian target of rapamycin(mTOR) in the inhibition of premature ovarian failure induced by D-galactose(D-gal) in mice model by ginsenoside Rg_1(Rg_1). Fifty-four female SPF BALB/c mice were randomly divided into PBS group, D-gal group, and Rg_1 group. In the D-gal group, D-galactose(200 mg·kg~(-1)·d~(-1)) was injected subcutaneously into the neck and back for 42 days. In the PBS group, an equal amount of phosphate buffered saline(PBS) was injected into the neck and back for 42 days. In addition to the therapy of D-gal group, Rg_1 group was given Rg_1(20 mg·kg~(-1)·d~(-1)) through intraperitoneal injection since the 15 th day for 28 days, at the same time, the D-gal group and the PBS group were also given an equal amount of PBS through intraperitoneal injection since the 15 th day for 28 days. After the treatment, the estrous cycle changes of the mice were detected, and the ovarian SA-β-Gal staining was used to detect the changes of ovarian aging. Western blot was used to detect the changes in protein expressions of PI3 K, Akt, mTOR, S6 k, LC3-Ⅱ and P16~(INK4 a). Fluorescence quantitative PCR was used to detect the changes in mRNA expressions of PI3 K, Akt, mTOR, S6 k, LC3-Ⅱ and P16~(INK4 a). According to the findings, compared with the PBS group, the D-gal group began to show estrous cycle disorder in the 3 rd week,the ovarian SA-β-Gal staining positive granulosa cells increased in the D-gal group, the expression of senescence marker P16~(INK4 a) increased, while the expression of autophagy signaling molecule LC3-Ⅱ decreased. After treatment with Rg_1, the positive rate of ovarian SA-β-Gal staining in Rg_1 group decreased, the expression level of autophagy signaling molecule LC3-Ⅱ in Rg_1 group was higher than that in D-gal group, while the expression level of senescence marker P16~(INK4 a) was lower than that in D-gal group. Compared with the PBS group, the protein and mRNA expressions of PI3 K, Akt, mTOR and S6 k in the D-gal group were up-regulated, the protein expressions of Akt, mTOR and S6 k in the Rg_1 group were up-regulated, and the mRNA expressions of PI3 K and mTOR were up-regulated. After treatment with Rg_1, the protein expressions of PI3 K, Akt, mTOR and S6 k in the Rg_1 group were lower than those in the D-gal group, while the mRNA expressions of Akt, mTOR and S6 k in the Rg_1 group were lower than those in the D-gal group. The finding ssuggested that Rg_1 has the effect in delaying ovarian premature failure in D-gal-induced mouse models, and PI3 K/Akt/mTOR autophagy signaling pathways play an important role.


Subject(s)
Animals , Autophagy , Female , Ginsenosides , Humans , Mice , Mice, Inbred BALB C , Phosphatidylinositol 3-Kinases , Primary Ovarian Insufficiency , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases
16.
Chinese Acupuncture & Moxibustion ; (12): 1211-1216, 2020.
Article in Chinese | WPRIM | ID: wpr-877588

ABSTRACT

OBJECTIVE@#To observe the effect of moxibustion on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin protein (PI3K/Akt/mTOR) signaling pathway in the foot-pad synovial tissue in rats with rheumatoid arthritis (RA), and to explore the mechanism of moxibustion for treating RA.@*METHODS@#Forty healthy SD rats were randomly divided into a control group, a model group, a moxibustion group, a cigarette-moxibustion group and a medication group, 8 rats in each group. The RA model was established with subcutaneous injection of complete Freund's adjuvant (CFA) in the left hind foot-pad under wind, cold and wet environment in the model group, the moxibustion group, the cigarette-moxibustion group and the medication group. The rats in the moxibustion group were treated with moxibustion at "Zusanli" (ST 36) for 20 min; the rats in the cigarette-moxibustion group were treated with moxibustion of ordinary cigarette at "Zusanli" (ST 36) for 20 min; the rats in the medication group were treated with tripterygium glycosides suspension (0.8 mg/100 g) by gavage. All the intervention was given once a day for 15 days. The left hind foot-pad volume was measured before and after modeling and after 15-day intervention. After 15-day intervention, the serum levels of IL-17 and IL-23 were detected by ELISA method, and the expression levels of PI3K, Akt and mTOR in synovial tissue of left hind foot-pad were detected by Western blot method.@*RESULTS@#The volume of left hind foot-pad, the serum levels of IL-23 and IL-17 and the expression of PI3K, Akt and mTOR in synovial tissue of left hind foot-pad in the model group were higher than those in the control group (@*CONCLUSION@#Moxibustion may play a therapeutic effect on RA by inhibiting the level of IL-23, IL-17 and the activity PI3K/Akt/mTOR, and regulating inflammatory response and autophagy.


Subject(s)
Animals , Arthritis, Rheumatoid/therapy , Moxibustion , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats , Rats, Sprague-Dawley , Signal Transduction , Synovial Membrane , TOR Serine-Threonine Kinases
17.
Braz. j. med. biol. res ; 53(2): e8793, 2020. tab, graf
Article in English | LILACS | ID: biblio-1055493

ABSTRACT

Aliskiren (ALS) is well known for its antihypertensive properties. However, the potential underlying the molecular mechanism and the anti-hypertrophic effect of ALS have not yet been fully elucidated. The aim of the present study was to investigate the role of ALS in mammalian target of rapamycin (mTOR) and apoptosis signaling using in vivo and in vitro models of cardiac hypertrophy. A rat model of cardiac hypertrophy was induced by isoproterenol treatment (5 mg·kg-1·day-1) for 4 weeks, with or without ALS treatment at 20 mg·kg-1·day-1. The expression of hypertrophic, fibrotic, and apoptotic markers was determined by RT-qPCR. The protein expression of apoptotic markers mTOR and p-mTOR was assessed by western blot analysis. The proliferation of H9C2 cells was monitored using the MTS assay. Cell apoptosis was analyzed using flow cytometry. In vivo, isoproterenol-treated rats exhibited worse cardiac function, whereas ALS treatment reversed these dysfunctions, which were associated with changes in p-mTOR, Bcl-2, Bax, and cleaved caspase-3 expression, as well as the number of apoptotic cells. In vitro, H9C2 cardiomyocyte viability was significantly inhibited and cardiac hypertrophy was induced by Ang II administration, but ALS reversed Ang II-induced H9C2 cardiomyocyte hypertrophy and death. Furthermore, Ang II triggered the activation of the mTOR and apoptosis pathways in hypertrophic cardiomyocytes that were inhibited by ALS treatment. These results indicated that ALS alleviated cardiac hypertrophy through inhibition of the mTOR and apoptosis pathways in cardiomyocytes.


Subject(s)
Animals , Male , Rats , Apoptosis/drug effects , Cardiomegaly/prevention & control , TOR Serine-Threonine Kinases/metabolism , Fumarates/administration & dosage , Amides/administration & dosage , Fibrosis/chemically induced , Fibrosis/prevention & control , Angiotensin II/pharmacology , Signal Transduction/drug effects , Blotting, Western , Rats, Sprague-Dawley , Cardiomegaly/chemically induced , Cardiomegaly/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Disease Models, Animal , TOR Serine-Threonine Kinases/drug effects , Flow Cytometry , Isoproterenol/pharmacology
18.
Biol. Res ; 53: 01, 2020. graf
Article in English | LILACS | ID: biblio-1089072

ABSTRACT

BACKGROUND: Long non-coding RNA small molecule RNA host gene 1 (SNHG1) was previously identified to be relevant with Parkinson's disease (PD) pathogenesis. This work aims to further elucidate the regulatory networks of SNHG1 involved in PD. Methods: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-hydrochloride (MPTP)-induced mice and 1-methyl-4-phenylpyridinium (MPP+)-treated SH-SY5Y cells were respectively constructed as the in vivo and in vitro PD models. Expression levels of SNHG1 and miR-153-3p were detected by qRT-PCR. Protein expression levels of phosphate and tension homology deleted on chromosome ten (PTEN) were measured by western blotting assay. Cell viability and apoptosis were determined by MTT and flow cytometry assays. The interactions among SNHG1, miR-153-3p and PTEN were identified by luciferase reporter assay, RNA immunoprecipitation, and/or RNA pull-down analysis. RESULTS: Increased SNHG1 expression was found in midbrain of MPTP-induced PD mice and MPP+-treated SH-SY5Y cells. Overexpression of SNHG1 lowered viability and enhanced apoptosis in MPP+-treated SH-SY5Y cells. Moreover, SNHG1 acted as a molecular sponge to inhibit the expression of miR-153-3p. Furthermore, miR-153-3p-mediated suppression of MPP+-induced cytotoxicity was abated following SNHG1 up-regulation. Additionally, PTEN was identified as a direct target of miR-153-3p, and SNHG1 could serve as a competing endogenous RNA (ceRNA) of miR-153-3p to improve the expression of PTEN. Besides, enforced expression of PTEN displayed the similar functions as SNHG1 overexpression in regulating the viability and apoptosis of MPP+-treated SH-SY5Y cells. Finally, SNHG1 was found to activate PTEN/AKT/mTOR signaling pathway in SH-SY5Y cells by targeting miR-153-3p. CONCLUSION: SNHG1 aggravates MPP+-induced cellular toxicity in SH-SY5Y cells by regulating PTEN/AKT/mTOR signaling via sponging miR-153-3p, indicating the potential of SNHG1 as a promising therapeutic target for PD.


Subject(s)
Animals , Male , Mice , Parkinson Disease/metabolism , 1-Methyl-4-phenylpyridinium/toxicity , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , RNA, Long Noncoding/metabolism , Parkinson Disease/genetics , Transfection , Signal Transduction , Cells, Cultured , Gene Expression Regulation , Blotting, Western , Apoptosis , MicroRNAs , Disease Models, Animal , Real-Time Polymerase Chain Reaction , RNA, Long Noncoding/genetics , Mice, Inbred C57BL
20.
Electron. j. biotechnol ; 38: 27-31, Mar. 2019. graf, ilus
Article in English | LILACS | ID: biblio-1051305

ABSTRACT

BACKGROUND: Oral cancer is one of the common malignant tumors of the head and neck. However, current treatments have numerous side effects, and drugs from natural sources may have better therapeutic potential. This research investigated the induction of apoptosis by α-hederin (α-HN), a constituent of Pulsatilla chinensis (Bunge) Regel, in the oral cancer cell line SCC-25 and its underlying mechanism. RESULTS: SCC-25 cells were treated with 50, 100, and 200 µmol/L α-HN. Cell proliferation; extent of apoptosis; activities of caspases-3, 8, and 9; and the expression of Bcl-2, Bax, phosphorylated (p)-phosphoinositide 3-kinase (PI3K), p-Akt, and p-mammalian target of rapamycin (mTOR) proteins were determined using the 3-(4,5)-2-thiazole-(2,5)-diphenyl tetrazolium bromide, flow cytometry, caspase activity detection kits, and western blot assays, respectively. The results showed that the proliferation of SCC-25 cells in the α-HN-treated groups decreased significantly, and the inhibitory effect was time and concentration dependent. Compared with cells in the control group, the extent of apoptosis increased significantly, caspase-3 and -9 activities were significantly enhanced, and the Bcl-2 level was lowered and the Bax level was elevated significantly in SCC-25 cells treated with α-HN for 48 h (P b 0.05). The expression of p-PI3K, p-Akt, and p-mTOR was also significantly lower in SCC-25 cells treated with α-HN than that in the control group (P b 0.05). CONCLUSION: These results indicate that α-HN can inhibit proliferation and induce apoptosis of SCC-25 cells and may exert these effects by inhibiting the PI3K/Akt/mTOR signaling pathway.


Subject(s)
Oleanolic Acid/analogs & derivatives , Saponins/pharmacology , Mouth Neoplasms/metabolism , Apoptosis/drug effects , Oleanolic Acid/metabolism , Oleanolic Acid/pharmacology , Saponins/metabolism , Signal Transduction/drug effects , Cell Survival , Blotting, Western , Phosphatidylinositol 3-Kinases/metabolism , Caspases , Pulsatilla , Cell Proliferation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Flow Cytometry , Head and Neck Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL