Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Neuroscience Bulletin ; (6): 1658-1670, 2021.
Article in English | WPRIM | ID: wpr-922653

ABSTRACT

Mechanistic target of rapamycin (mTOR) signaling governs important physiological and pathological processes key to cellular life. Loss of mTOR negative regulators and subsequent over-activation of mTOR signaling are major causes underlying epileptic encephalopathy. Our previous studies showed that UBTOR/KIAA1024/MINAR1 acts as a negative regulator of mTOR signaling, but whether UBTOR plays a role in neurological diseases remains largely unknown. We therefore examined a zebrafish model and found that ubtor disruption caused increased spontaneous embryonic movement and neuronal activity in spinal interneurons, as well as the expected hyperactivation of mTOR signaling in early zebrafish embryos. In addition, mutant ubtor larvae showed increased sensitivity to the convulsant pentylenetetrazol, and both the motor activity and the neuronal activity were up-regulated. These phenotypic abnormalities in zebrafish embryos and larvae were rescued by treatment with the mTORC1 inhibitor rapamycin. Taken together, our findings show that ubtor regulates motor hyperactivity and epilepsy-like behaviors by elevating neuronal activity and activating mTOR signaling.


Subject(s)
Animals , Hyperkinesis/genetics , Mutation/genetics , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Zebrafish/metabolism
2.
Neuroscience Bulletin ; (6): 1314-1324, 2021.
Article in English | WPRIM | ID: wpr-922627

ABSTRACT

The exacerbation of progressive multiple sclerosis (MS) is closely associated with obstruction of the differentiation of oligodendrocyte progenitor cells (OPCs). To discover novel therapeutic compounds for enhancing remyelination by endogenous OPCs, we screened for myelin basic protein expression using cultured rat OPCs and a library of small-molecule compounds. One of the most effective drugs was pinocembrin, which remarkably promoted OPC differentiation and maturation without affecting cell proliferation and survival. Based on these in vitro effects, we further assessed the therapeutic effects of pinocembrin in animal models of demyelinating diseases. We demonstrated that pinocembrin significantly ameliorated the progression of experimental autoimmune encephalomyelitis (EAE) and enhanced the repair of demyelination in lysolectin-induced lesions. Further studies indicated that pinocembrin increased the phosphorylation level of mammalian target of rapamycin (mTOR). Taken together, our results demonstrated that pinocembrin promotes OPC differentiation and remyelination through the phosphorylated mTOR pathway, and suggest a novel therapeutic prospect for this natural flavonoid product in treating demyelinating diseases.


Subject(s)
Animals , Cell Differentiation , Flavanones , Mice , Mice, Inbred C57BL , Myelin Sheath/metabolism , Oligodendroglia/metabolism , Rats , Remyelination , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
3.
Article in Chinese | WPRIM | ID: wpr-879022

ABSTRACT

To screen the sensitive cell lines of active fraction from clove(AFC) on human colon cancer cells, investigate the effects of AFC on the cells proliferation and apoptosis as well as PI3 K/Akt/mTOR(phosphoinositide 3-kinase/Akt/mechanistic target of rapamycin) signaling pathways involved, and reveal the mechanism of AFC for inducing apoptosis of human colorectal carcinoma cells. Cell counting kit-8(CCK-8) assay was used to detect the cytotoxic effect of different concentrations of AFC. AFC-induced apoptosis was detected by Hoechst 33258 fluorescence staining and Annexin V-FITC/PI double staining. HCT116 cells were treated with AFC with or without pretreatment with insulin-like growth factor-Ⅰ(IGF-Ⅰ), and then the protein expression levels of caspase-3, caspase-9, poly ADP-ribose polymerase(PARP), PI3 K, p-PI3 K, Akt, p-Akt, mTOR and p-mTOR in PI3 K/Akt/mTOR signaling pathway were detected by Western blot. RESULTS:: showed that the most obvious inhibitory effect of AFC was on human colon cancer HCT116 cells, and the optimal AFC treatment time was 48 hours. After AFC treatment, typical apoptotic features such as nuclear chromatin concentration, nuclear fragmentation and apoptotic bodies appeared in a dose-dependent manner. Annexin V-FITC/PI double staining showed that as compared with the control group, 50 and 100 μg·mL~(-1) AFC groups increased the apoptosis rate of HCT116 cells significantly(P<0.001); AFC activated caspase-9, cleaved caspase-3 and cleaved PARP in a concentration-dependent manner. The protein expression levels of cleaved caspase-3/procaspase-3, cleaved PARP/PARP and caspase-9/β-actin after treatment of AFC(100 μg·mL~(-1)) were significantly different from those in the control group(P<0.001). The relative protein expression of p-PI3 K, p-Akt and p-mTOR decreased in a concentration dependent manner, while Akt and mTOR showed no significant differences among groups. The ratios of p-PI3 K/PI3 K, p-Akt/Akt and p-mTOR/mTOR in the AFC groups(50 and 100 μg·mL~(-1)) were significantly lower than those in the control group(P<0.01). Its combination with IGF-Ⅰ weakened the effect of AFC in inhibiting PI3 K/Akt/mTOR signaling pathway. The ratios of p-Akt/Akt and p-mTOR/mTOR in the AFC+IGF-Ⅰ group were significantly enhanced as compared with the AFC group(P<0.05). Apoptosis-related protein expression levels(cleaved caspase-3 and cleaved PARP) in HCT116 cells treated with AFC+IGF-Ⅰ were also down regulated. As compared with the AFC group, the ratios of cleaved caspase-3/procaspase-3 and cleaved PARP/PARP in the AFC+IGF-Ⅰ group were significantly decreased(P<0.01). In summary, AFC activated caspase-mediated cascades and induced HCT116 cells apoptosis in a dose-dependent manner, which may be associated with the inhibition of the PI3 K/Akt/mTOR signaling pathway.


Subject(s)
Apoptosis , Cell Line, Tumor , Cell Proliferation , Colonic Neoplasms/drug therapy , HCT116 Cells , Humans , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Syzygium , TOR Serine-Threonine Kinases/metabolism
4.
Biol. Res ; 53: 01, 2020. graf
Article in English | LILACS | ID: biblio-1089072

ABSTRACT

BACKGROUND: Long non-coding RNA small molecule RNA host gene 1 (SNHG1) was previously identified to be relevant with Parkinson's disease (PD) pathogenesis. This work aims to further elucidate the regulatory networks of SNHG1 involved in PD. Methods: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-hydrochloride (MPTP)-induced mice and 1-methyl-4-phenylpyridinium (MPP+)-treated SH-SY5Y cells were respectively constructed as the in vivo and in vitro PD models. Expression levels of SNHG1 and miR-153-3p were detected by qRT-PCR. Protein expression levels of phosphate and tension homology deleted on chromosome ten (PTEN) were measured by western blotting assay. Cell viability and apoptosis were determined by MTT and flow cytometry assays. The interactions among SNHG1, miR-153-3p and PTEN were identified by luciferase reporter assay, RNA immunoprecipitation, and/or RNA pull-down analysis. RESULTS: Increased SNHG1 expression was found in midbrain of MPTP-induced PD mice and MPP+-treated SH-SY5Y cells. Overexpression of SNHG1 lowered viability and enhanced apoptosis in MPP+-treated SH-SY5Y cells. Moreover, SNHG1 acted as a molecular sponge to inhibit the expression of miR-153-3p. Furthermore, miR-153-3p-mediated suppression of MPP+-induced cytotoxicity was abated following SNHG1 up-regulation. Additionally, PTEN was identified as a direct target of miR-153-3p, and SNHG1 could serve as a competing endogenous RNA (ceRNA) of miR-153-3p to improve the expression of PTEN. Besides, enforced expression of PTEN displayed the similar functions as SNHG1 overexpression in regulating the viability and apoptosis of MPP+-treated SH-SY5Y cells. Finally, SNHG1 was found to activate PTEN/AKT/mTOR signaling pathway in SH-SY5Y cells by targeting miR-153-3p. CONCLUSION: SNHG1 aggravates MPP+-induced cellular toxicity in SH-SY5Y cells by regulating PTEN/AKT/mTOR signaling via sponging miR-153-3p, indicating the potential of SNHG1 as a promising therapeutic target for PD.


Subject(s)
Animals , Male , Mice , Parkinson Disease/metabolism , 1-Methyl-4-phenylpyridinium/toxicity , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , RNA, Long Noncoding/metabolism , Parkinson Disease/genetics , Transfection , Signal Transduction , Cells, Cultured , Gene Expression Regulation , Blotting, Western , Apoptosis , MicroRNAs , Disease Models, Animal , Real-Time Polymerase Chain Reaction , RNA, Long Noncoding/genetics , Mice, Inbred C57BL
5.
Braz. j. med. biol. res ; 53(2): e8793, 2020. tab, graf
Article in English | LILACS | ID: biblio-1055493

ABSTRACT

Aliskiren (ALS) is well known for its antihypertensive properties. However, the potential underlying the molecular mechanism and the anti-hypertrophic effect of ALS have not yet been fully elucidated. The aim of the present study was to investigate the role of ALS in mammalian target of rapamycin (mTOR) and apoptosis signaling using in vivo and in vitro models of cardiac hypertrophy. A rat model of cardiac hypertrophy was induced by isoproterenol treatment (5 mg·kg-1·day-1) for 4 weeks, with or without ALS treatment at 20 mg·kg-1·day-1. The expression of hypertrophic, fibrotic, and apoptotic markers was determined by RT-qPCR. The protein expression of apoptotic markers mTOR and p-mTOR was assessed by western blot analysis. The proliferation of H9C2 cells was monitored using the MTS assay. Cell apoptosis was analyzed using flow cytometry. In vivo, isoproterenol-treated rats exhibited worse cardiac function, whereas ALS treatment reversed these dysfunctions, which were associated with changes in p-mTOR, Bcl-2, Bax, and cleaved caspase-3 expression, as well as the number of apoptotic cells. In vitro, H9C2 cardiomyocyte viability was significantly inhibited and cardiac hypertrophy was induced by Ang II administration, but ALS reversed Ang II-induced H9C2 cardiomyocyte hypertrophy and death. Furthermore, Ang II triggered the activation of the mTOR and apoptosis pathways in hypertrophic cardiomyocytes that were inhibited by ALS treatment. These results indicated that ALS alleviated cardiac hypertrophy through inhibition of the mTOR and apoptosis pathways in cardiomyocytes.


Subject(s)
Animals , Male , Rats , Apoptosis/drug effects , Cardiomegaly/prevention & control , TOR Serine-Threonine Kinases/metabolism , Fumarates/administration & dosage , Amides/administration & dosage , Fibrosis/chemically induced , Fibrosis/prevention & control , Angiotensin II/pharmacology , Signal Transduction/drug effects , Blotting, Western , Rats, Sprague-Dawley , Cardiomegaly/chemically induced , Cardiomegaly/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Disease Models, Animal , TOR Serine-Threonine Kinases/drug effects , Flow Cytometry , Isoproterenol/pharmacology
6.
Braz. j. med. biol. res ; 53(7): e9207, 2020. tab, graf
Article in English | ColecionaSUS, LILACS, ColecionaSUS | ID: biblio-1132533

ABSTRACT

The objective of this study was to investigate the relationship between PI3K/mTOR/RhoA signaling regulated cytoskeletal rearrangements and phagocytic capacity of macrophages. RAW264.7 macrophages were divided into four groups; blank control, negative control, PI3K-RNAi, and mTOR-RNAi. The cytoskeletal changes in the macrophages were observed. Furthermore, the phagocytic capacity of macrophages against Escherichia coli is reported as mean fluorescence intensity (MFI) and percent phagocytosis. Transfection yielded 82.1 and 81.5% gene-silencing efficiencies against PI3K and mTOR, respectively. The PI3K-RNAi group had lower mRNA and protein expression levels of PI3K, mTOR, and RhoA than the blank and negative control groups (Р<0.01). The mTOR-RNAi group had lower mRNA and protein levels of mTOR and RhoA than the blank and the negative control groups (Р<0.01). Macrophages in the PI3K-RNAi group exhibited stiff and inflexible morphology with short, disorganized filopodia and reduced number of stress fibers. Macrophages in the mTOR-RNAi group displayed pronounced cellular deformations with long, dense filopodia and an increased number of stress fibers. The PI3K-RNAi group exhibited lower MFI and percent phagocytosis than blank and negative control groups, whereas the mTOR-RNAi group displayed higher MFI and percent phagocytosis than the blank and negative controls (Р<0.01). Before and after transfection, the mRNA and protein levels of PI3K were both positively correlated with mTOR and RhoA (Р<0.05), but the mRNA and protein levels of mTOR were negatively correlated with those of RhoA (Р<0.05). Changes in the phagocytic capacity of macrophages were associated with cytoskeletal rearrangements and were regulated by the PI3K/mTOR/RhoA signaling pathway.


Subject(s)
Humans , Animals , Rats , Phagocytosis/physiology , Cytoskeleton/metabolism , Phosphatidylinositol 3-Kinases/metabolism , rhoA GTP-Binding Protein/metabolism , TOR Serine-Threonine Kinases/metabolism , Macrophages/metabolism , Transfection , Signal Transduction , Blotting, Western , Gene Silencing , RNA Interference , Real-Time Polymerase Chain Reaction , RAW 264.7 Cells , Genetic Vectors
8.
Electron. j. biotechnol ; 38: 27-31, Mar. 2019. graf, ilus
Article in English | LILACS | ID: biblio-1051305

ABSTRACT

BACKGROUND: Oral cancer is one of the common malignant tumors of the head and neck. However, current treatments have numerous side effects, and drugs from natural sources may have better therapeutic potential. This research investigated the induction of apoptosis by α-hederin (α-HN), a constituent of Pulsatilla chinensis (Bunge) Regel, in the oral cancer cell line SCC-25 and its underlying mechanism. RESULTS: SCC-25 cells were treated with 50, 100, and 200 µmol/L α-HN. Cell proliferation; extent of apoptosis; activities of caspases-3, 8, and 9; and the expression of Bcl-2, Bax, phosphorylated (p)-phosphoinositide 3-kinase (PI3K), p-Akt, and p-mammalian target of rapamycin (mTOR) proteins were determined using the 3-(4,5)-2-thiazole-(2,5)-diphenyl tetrazolium bromide, flow cytometry, caspase activity detection kits, and western blot assays, respectively. The results showed that the proliferation of SCC-25 cells in the α-HN-treated groups decreased significantly, and the inhibitory effect was time and concentration dependent. Compared with cells in the control group, the extent of apoptosis increased significantly, caspase-3 and -9 activities were significantly enhanced, and the Bcl-2 level was lowered and the Bax level was elevated significantly in SCC-25 cells treated with α-HN for 48 h (P b 0.05). The expression of p-PI3K, p-Akt, and p-mTOR was also significantly lower in SCC-25 cells treated with α-HN than that in the control group (P b 0.05). CONCLUSION: These results indicate that α-HN can inhibit proliferation and induce apoptosis of SCC-25 cells and may exert these effects by inhibiting the PI3K/Akt/mTOR signaling pathway.


Subject(s)
Oleanolic Acid/analogs & derivatives , Saponins/pharmacology , Mouth Neoplasms/metabolism , Apoptosis/drug effects , Oleanolic Acid/metabolism , Oleanolic Acid/pharmacology , Saponins/metabolism , Signal Transduction/drug effects , Cell Survival , Blotting, Western , Phosphatidylinositol 3-Kinases/metabolism , Caspases , Pulsatilla , Cell Proliferation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Flow Cytometry , Head and Neck Neoplasms/metabolism
9.
Braz. j. med. biol. res ; 52(11): e8371, 2019. graf
Article in English | LILACS | ID: biblio-1039257

ABSTRACT

Oxiracetam (ORC) is a commonly used nootropic drug for improving cognition and memory impairments. The therapeutic effect and underlying mechanism of ORC in vascular dementia (VaD) treatment remain unknown. In this study, 3-month-old male Sprague-Dawley rats with permanent bilateral common carotid artery occlusion-induced VaD were treated orally with low (100 mg/kg) or high (200 mg/kg) dose ORC once a day for 4 weeks. The results of the Morris water maze test and Nissl staining showed that ORC treatment significantly alleviated learning and memory deficits and neuronal damage in rats with VaD. Mechanistically, the protein levels of a panel of genes associated with neuronal apoptosis (Bcl-2, Bax) and autophagy (microtubule-associated protein 1 chain 3, Beclin1, p62) were significantly altered by ORC treatment compared with VaD, suggesting a protective role of ORC against VaD-induced neuronal apoptosis and autophagy. Moreover, the Akt/mTOR pathway, which is known to be the upstream signaling governing apoptosis and autophagy, was found to be activated in ORC-treated rats, suggesting an involvement of Akt/mTOR activation in ORC-rendered protection in VaD rats. Taken together, this study demonstrated that ORC may alleviate learning and memory impairments and neuronal damage in VaD rats by altering the expression of apoptosis/autophagy-related genes and activation of the Akt/mTOR signaling pathway in neurons.


Subject(s)
Animals , Male , Rats , Pyrrolidines/administration & dosage , Dementia, Vascular/drug therapy , Signal Transduction/physiology , Neuroprotective Agents/administration & dosage , Proto-Oncogene Proteins c-akt/metabolism , Cognitive Dysfunction/drug therapy , Autophagy/drug effects , Dementia, Vascular/physiopathology , Dementia, Vascular/metabolism , Rats, Sprague-Dawley , Apoptosis/drug effects , Maze Learning/drug effects , Disease Models, Animal , TOR Serine-Threonine Kinases/metabolism , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/metabolism
10.
Biol. Res ; 52: 8, 2019. tab, graf
Article in English | LILACS | ID: biblio-1011404

ABSTRACT

BACKGROUND: Cervical cancer (CC) ranks third in the morbidity and mortality of female cancer around the world. Derlin1 has been found to be overexpressed in several human cancers. However, it is still unclear about its roles in CC. The research aims to explore the relationship between Derlin1 and CC. METHODS: We purchased a human CC tissues microarray, which contained CC tissues and corresponding para-cancerous tissues from 93 patients with primary cervical squamous cell carcinoma. Immunohistochemical staining was used to confirm the expression of Derlin1 in these tissues. And we detected the differential expression of Derlin1 in cervical cancer cell lines and normal cervical epithelial cells (H8). Further, the cervical cancer cell lines SiHa and C33A were used as an in vitro model, which was down-regulated the expression of Derlin1 using siRNA interference technology. The effects of Derlin1 down-regulating in CC cell lines on cell proliferation and migration were detected by CCK8 assay and transwell assay, respectively. The effect of Derlin1 down-regulating on apoptosis was analyzed by flow cytometry, and apoptosis-related proteins were detected using western blotting. In-depth mechanisms were studied using western blotting. In addition, the effects of Derlin1 up-regulating in normal cervical epithelial cells also were exposed. RESULTS: Derlin1 was significantly elevated in CC tissues (81.7%, 76/93), and the expression of Derlin 1 was positively correlated with the tumor size, pathological grade, and lymph node metastasis in CC patients. And Derlin 1 was high expressed in cervical cancer cell lines compared to H8 cells. Knockdown of Derlin 1 in cervical cancer cell lines inhibited cell proliferation and migration. Moreover, knockdown of Derlin 1 induced apoptosis and affected the expression of apoptosis-related proteins, including Bcl-2, Bax, Bim, caspase3 and caspase9. Further experiments showed that AKT/mTOR signal pathway might be involve in this processes that knockdown of Derlin 1 inhibited the expression of p-AKT and p-mTOR. Over-expression of Derlin 1 in H8 cells promoted cell proliferation and migration via up-regulated the expression of p-AKT and p-mTOR. CONCLUSION: Derlin 1 is an oncogene in CC via AKT/mTOR pathway. It might be a potential therapeutic target for CC.


Subject(s)
Humans , Female , Carcinoma, Squamous Cell/metabolism , Signal Transduction/physiology , Uterine Cervical Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Membrane Proteins/metabolism , Immunohistochemistry , Carcinoma, Squamous Cell/pathology , Uterine Cervical Neoplasms/pathology , Apoptosis , Protein Array Analysis , Cell Line, Tumor , Cell Proliferation , Proto-Oncogene Proteins c-akt/physiology
11.
Biol. Res ; 52: 44, 2019. graf
Article in English | LILACS | ID: biblio-1019508

ABSTRACT

BACKGROUND: Free fatty acid receptor 1 (FFAR1) is G-protein coupled receptor predominantly expressed in pancreatic ß-cells that is activated by a variety of free fatty acids (FFAs). Once activated, it promotes glucose-stimulated insulin secretion (GSIS). However, increased levels of FFAs lead to lipotoxicity, inducing loss of ß-cell function. FFAR1 plays a key role in the development of type 2 diabetes (T2D), and previous studies have indicated the importance of developing anti-diabetic therapies against FFAR1, although its role in the regulation of ß-cell function remains unclear. The present study investigated the role of FFAR1 under lipotoxic conditions using palmitic acid (PA). The rat insulinoma 1 clone 832/13 (INS-1 832/13) cell line was used as a model as it physiologically resembles native pancreatic ß-cells. Key players of the insulin signaling pathway, such as mTOR, Akt, IRS-1, and the insulin receptor (INSR1ß), were selected as candidates to be analyzed under lipotoxic conditions. RESULTS: We revealed that PA-induced lipotoxicity affected GSIS in INS-1 cells and negatively modulated the activity of both IRS-1 and Akt. Reduced phosphorylation of both IRS-1 S636/639 and Akt S473 was observed, in addition to decreased expression of both INSR1ß and FFAR1. Moreover, transient knockdown of FFAR1 led to a reduction in IRS-1 mRNA expression and an increase in INSR1ß; mRNA. Finally, PA affected localization of FFAR1 from the cytoplasm to the perinucleus. CONCLUSIONS: In conclusion, our study suggests a novel regulatory involvement of FFAR1 in crosstalk with mTOR-Akt and IRS-1 signaling in ß-cells under lipotoxic conditions.


Subject(s)
Animals , Rats , Palmitic Acid/toxicity , Receptors, G-Protein-Coupled/metabolism , Insulin-Secreting Cells/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Lipid Metabolism/drug effects , TOR Serine-Threonine Kinases/metabolism , Signal Transduction , Cell Line , Apoptosis , Insulin-Secreting Cells/metabolism
12.
Biol. Res ; 52: 58, 2019. graf
Article in English | LILACS | ID: biblio-1100910

ABSTRACT

BACKGROUND: Our previous study showed that knockdown of long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) attenuated myocardial apoptosis in mouse acute myocardial infarction (AMI). This study aims to explore whether MALAT1 enhanced cardiomyocyte apoptosis via autophagy regulation and the underlying mechanisms of MALAT1 regulating autophagy. METHODS: Cardiomyocytes were isolated from neonatal mice and then stimulated with hypoxia/reoxygenation (H/R) injury to mimic AMI. The autophagy level was assessed using GFP-LC3 immunofluorescence and western blot analysis of autophagy-related proteins. RNA pull-down and RNA immunoprecipitation (RIP) was performed to analyze the binding of MALAT1 and EZH2. Chromatin immunoprecipitation (ChIP) assay was performed to analyze the binding of TSC2 promoter and EZH2. The cell apoptosis was evaluated using TUNEL staining and western blot analysis of apoptosis-related proteins. RESULTS: H/R injury increased MALAT1 expression in cardiomyocytes. Furthermore, MALAT1 overexpression inhibited, whereas MALAT1 knockdown enhanced the autophagy of cardiomyocytes. Moreover, MALAT1 overexpression recruited EZH2 to TSC2 promoter regions to elevate H3K27me3 and epigenetically inhibited TSC2 transcription. Importantly, TSC2 overexpression suppressed mTOR signaling and then activated the autophagy. Further results showed that MALAT1 inhibited proliferation and enhanced apoptosis of cardiomyocytes through inhibiting TSC2 and autophagy. CONCLUSION: These findings demonstrate that the increased MALAT1 expression induced by H/R injury enhances cardiomyocyte apoptosis through autophagy inhibition by regulating TSC2-mTOR signaling.


Subject(s)
Animals , Mice , Autophagy/physiology , Apoptosis/physiology , Myocytes, Cardiac/metabolism , TOR Serine-Threonine Kinases/genetics , RNA, Long Noncoding/genetics , Tuberous Sclerosis Complex 2 Protein/genetics , Autophagy/genetics , Signal Transduction , Blotting, Western , Fluorescent Antibody Technique , Apoptosis/genetics , Reverse Transcriptase Polymerase Chain Reaction , Chromatin Immunoprecipitation , TOR Serine-Threonine Kinases/metabolism , RNA, Long Noncoding/metabolism , Tuberous Sclerosis Complex 2 Protein/metabolism
13.
Braz. j. med. biol. res ; 51(10): e6839, 2018. graf
Article in English | LILACS | ID: biblio-951715

ABSTRACT

Long non-coding RNA antisense non-coding RNA in the INK4 locus (ANRIL) has been reported to promote tumorigenesis via regulating microRNA (miR)-99a in gastric cancer cells. However, the role of each component involved in it is still not well understood. This study aimed to verify the role of ANRIL in gastric cancer as well as the underlying mechanisms. ANRIL levels in clinical gastric cancer tissues and cell lines were tested by qPCR. Effects of ANRIL silence on cell viability, migration and invasion, apoptosis, and miR-99a expression in MKN-45 and SGC-7901 cells were measured using CCK-8, Transwell assay, flow cytometry, and qPCR assays, respectively. Then, effects of miR-99a inhibition on ANRIL-silenced cells were evaluated. B-lymphoma Mo-MLV insertion region 1 (BMI1) expression, after abnormal expression of ANRIL and miR-99a, was determined. Finally, expression of key proteins in the apoptotic, Notch, and mTOR pathways was assessed. ANRIL level was elevated in gastric cancer tissues and cell lines. Knockdown of ANRIL suppressed cell viability, migration, and invasion, and increased apoptosis through up-regulating miR-99a. Furthermore, ANRIL silence down-regulated BMI1 via up-regulating miR-99a. BMI1 silence down-regulated Bcl-2 and key kinases in the Notch and mTOR pathways and up-regulated p16 and cleaved caspases. We verified the tumor suppressive effects of ANRIL knockdown in gastric cancer cells via crosstalk with miR-99a. Together, we provided a novel regulatory mechanism for ANRIL in gastric cancer, in which ANRIL silence down-regulated BMI1 via miR-99a, along with activation of the apoptotic pathway and inhibition of the Notch and mTOR pathways.


Subject(s)
Humans , Stomach Neoplasms/metabolism , Down-Regulation , MicroRNAs/metabolism , TOR Serine-Threonine Kinases/metabolism , RNA, Long Noncoding/genetics , Carcinogenesis/genetics , Stomach Neoplasms/pathology , Transfection , Gene Expression Regulation, Neoplastic , Up-Regulation , Apoptosis/genetics , Cell Line, Tumor , Neoplasm Invasiveness
14.
Dental press j. orthod. (Impr.) ; 20(1): 79-84, Jan-Feb/2015. tab, graf
Article in English | LILACS | ID: lil-741451

ABSTRACT

OBJECTIVE: The aim of the present study was to determine the morphological differences in the base of the skull of individuals with cleft lip and palate and Class III malocclusion in comparison to control groups with Class I and Class III malocclusion. METHODS: A total of 89 individuals (males and females) aged between 5 and 27 years old (Class I, n = 32; Class III, n = 29; and Class III individuals with unilateral cleft lip and palate, n = 28) attending PUC-MG Dental Center and Cleft Lip/Palate Care Center of Baleia Hospital and PUC-MG (CENTRARE) were selected. Linear and angular measurements of the base of the skull, maxilla and mandible were performed and assessed by a single calibrated examiner by means of cephalometric radiographs. Statistical analysis involved ANCOVA and Bonferroni correction. RESULTS: No significant differences with regard to the base of the skull were found between the control group (Class I) and individuals with cleft lip and palate (P > 0.017). The cleft lip/palate group differed from the Class III group only with regard to CI.Sp.Ba (P = 0.015). Individuals with cleft lip and palate had a significantly shorter maxillary length (Co-A) in comparison to the control group (P < 0.001). No significant differences were found in the mandible (Co-Gn) of the control group and individuals with cleft lip and palate (P = 1.000). CONCLUSION: The present findings suggest that there are no significant differences in the base of the skull of individuals Class I or Class III and individuals with cleft lip and palate and Class III malocclusion. .


OBJETIVO: o objetivo do presente estudo foi determinar diferenças morfológicas da base do crânio de indivíduos portadores de fissura de lábio e palato e de má oclusão de Classe III, comparado-os com indivíduos controle com má oclusão de Classes I ou III. MÉTODOS: oitenta e nove indivíduos, de ambos os sexos, com idade variando entre 5 e 27 anos, Classe I (n = 32), Classe III não fissurados (n = 29) e Classe III com fissura labiopalatina unilateral (n = 28), oriundos do Centro de Odontologia e Pesquisa da PUC-MG e do Centro de Atendimento de Fissurados do Hospital da Baleia e da PUC-MG (CENTRARE), foram selecionados. Medições lineares e angulares da base do crânio, maxila e mandíbula foram realizadas e avaliadas por um único examinador calibrado, por meio de radiografias cefalométricas. Foram utilizados os testes ANCOVA e correção de Bonferroni para a análise estatística dos dados. RESULTADOS: com relação à base do crânio, os resultados não indicaram diferença estatística entre indivíduos controle (Classe I) e os indivíduos com fissuras (p > 0,017). O grupo com fissura foi diferente do grupo Classe III somente em relação à medida CI.Sp.Ba (p = 0,015). O comprimento maxilar (Co-A) apresentou diferença estatisticamente significativa na comparação entre o grupo controle (Classe I) e o grupo com fissuras (p < 0,001), sendo que os fissurados apresentaram uma maxila menor. Não foram encontradas diferenças na mandíbula (Co-Gn) entre indivíduos do grupo controle (Classe I) e indivíduos fissurados (p = 1,000). CONCLUSÃO: os resultados sugerem que não houve diferença estatisticamente significativa na base do crânio entre indivíduos Classe I e III e indivíduos com fissuras de lábio e palato com má oclusão de Classe III. .


Subject(s)
Animals , Female , Cardiomegaly/metabolism , Cardiomegaly/pathology , Fetal Heart/metabolism , Fetal Heart/pathology , Maternal Nutritional Physiological Phenomena , Overnutrition/metabolism , Overnutrition/pathology , Biomarkers/metabolism , Calcineurin/metabolism , Cardiovascular Diseases/epidemiology , Extracellular Space , Fascia/pathology , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Developmental , Myofibrils/pathology , NFATC Transcription Factors/metabolism , Natriuretic Peptides/genetics , Natriuretic Peptides/metabolism , Phosphorylation , RNA, Messenger/metabolism , Sheep, Domestic , TOR Serine-Threonine Kinases/metabolism
15.
Gut and Liver ; : 79-87, 2014.
Article in English | WPRIM | ID: wpr-36649

ABSTRACT

BACKGROUND/AIMS: The current study examines the expression of molecular biomarkers in hepatocellular carcinoma (HCC) and whether these findings correlate with the clinicopathologic features of the disease and patient survival. METHODS: We analyzed the immunohistochemical expression of p53, mammalian target of rapamycin (mTOR), c-Met, and insulin-like growth factor 1 receptor (IGF-1R) heat shock protein 70 (HSP70) with the clinicopathologic features of 83 HCCs. RESULTS: p53 expression was higher in the male patients with undifferentiated histological tumor grades, cirrhosis, and portal vein invasion. High 48 c-Met expression correlated with cirrhosis, and high mTOR expression correlated with the tumor grade and cirrhosis. High IGF-1R expression correlated with the tumor grade and cirrhosis. A multivariate analysis identified a significant relationship between the high expression of p53, tumor grade, and portal vein invasion. In addition, a high expression of mTOR was related to tumor grade and cirrhosis, and a high expression of HSP70 was related to portal vein invasion in a multivariate analysis. The Kaplan-Meier survival curve for patients with high versus low Edmondson grades and p53 expression was statistically significant. CONCLUSIONS: p53, mTOR, and IGF-1R expression correlated with the Edmondson tumor grade in a univariate analysis, while p53 and mTOR correlated with the Edmondson tumor grade in a multivariate analysis. In addition, the tumor grade was found to predict survival. p53 was primarily related to the clinicopathologic features compared to other markers, and it is a poor prognostic factor of survival.


Subject(s)
Adult , Aged , Carcinoma, Hepatocellular/metabolism , Disease-Free Survival , Female , HSP70 Heat-Shock Proteins/metabolism , Humans , Liver Neoplasms/metabolism , Male , Middle Aged , Prognosis , Proto-Oncogene Proteins c-met/metabolism , Receptor, IGF Type 1/metabolism , Retrospective Studies , Risk Factors , TOR Serine-Threonine Kinases/metabolism , Treatment Outcome , Biomarkers, Tumor/metabolism , Tumor Suppressor Protein p53/metabolism
16.
Article in English | WPRIM | ID: wpr-51697

ABSTRACT

The expression of hypoxia-inducible factor (HIF) is influenced by reactive oxygen species (ROS). Effect of bilirubin on HIF-1 expression in proximal tubular cells was investigated under physiological oxygen concentration, which is relative hypoxic condition mimicking oxygen content in the medulla of renal tissue. The human kidney (HK2) cells were cultured in 5% oxygen with or without bilirubin. HIF-1alpha protein expression was increased by bilirubin treatment at 0.01-0.2 mg/dL concentration. The messenger RNA expression of HIF-1alpha was increased by 1.69+/-0.05 folds in the cells cultured with 0.1 mg/dL bilirubin, compared to the control cells. The inhibitors of PI3K/mTOR, PI3K/AKT, and ERK 1/2 pathways did not attenuate increased HIF-1alpha expression by bilirubin. HIF-1alpha expression decreased by 10 microM exogenous hydrogen peroxide (H2O2); scavenger of ROS with or without bilirubin in the HK2 cells increased HIF-1alpha concentration more than that in the cells without bilirubin. Exogenous H2O2 decreased the phosphorylation of P70S6 kinase, which was completely reversed by bilirubin treatment. Knockdown of NOX4 gene by small interfering RNA (siRNA) increased HIF-1alpha mRNA expression. In coonclusion, bilirubin enhances HIF-1alpha transcription as well as the up-regulation of HIF-1alpha protein translation through the attenuation of ROS and subunits of NADPH oxidase.


Subject(s)
Bilirubin/pharmacology , Cell Line , Epithelial Cells/cytology , Humans , Hydrogen Peroxide/toxicity , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Kidney Tubules, Proximal/cytology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , NADPH Oxidases/antagonists & inhibitors , Oxygen/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Transcriptional Activation/drug effects , Up-Regulation/drug effects
17.
Article in English | WPRIM | ID: wpr-229078

ABSTRACT

Trichomonas vaginalis secretes a number of proteases which are suspected to be the cause of pathogenesis; however, little is understood how they manipulate host cells. The mammalian target of rapamycin (mTOR) regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, and transcription. We detected various types of metalloproteinases including GP63 protein from T. vaginalis trophozoites, and T. vaginalis GP63 metalloproteinase was confirmed by sequencing and western blot. When SiHa cells were stimulated with live T. vaginalis, T. vaginalis excretory-secretory products (ESP) or T. vaginalis lysate, live T. vaginalis and T. vaginalis ESP induced the mTOR cleavage in both time- and parasite load-dependent manner, but T. vaginalis lysate did not. Pretreatment of T. vaginalis with a metalloproteinase inhibitor, 1,10-phenanthroline, completely disappeared the mTOR cleavage in SiHa cells. Collectively, T. vaginalis metallopeptidase induces host cell mTOR cleavage, which may be related to survival of the parasite.


Subject(s)
Blotting, Western , Cell Line, Tumor , Epithelial Cells/metabolism , Humans , Metalloproteases/genetics , Proteolysis , Sequence Analysis, DNA , TOR Serine-Threonine Kinases/metabolism , Trichomonas vaginalis/enzymology
18.
Article in English | WPRIM | ID: wpr-124858

ABSTRACT

We established an orthotopic non-muscle invasive bladder cancer (NMIBC) mouse model expressing the mammalian target of the rapamycin (mTOR) signaling pathway. After intravesical instillation of KU-7-lucs (day 0), animals were subsequently monitored by bioluminescence imaging (BLI) on days 4, 7, 14, and 21, and performed histopathological examination. We also validated the orthotopic mouse model expressing the mTOR signaling pathway immunohistochemically. In vitro BLI photon density was correlated with KU-7-luc cell number (r2 = 0.97, P < 0.01) and in vivo BLI photon densities increased steadily with time after intravesical instillation. The tumor take rate was 84.2%, formed initially on day 4 and remained NMIBC up to day 21. T1 photon densities were significantly higher than Ta (P < 0.01), and histological tumor volume was positively correlated with BLI photon density (r2 = 0.87, P < 0.01). The mTOR signaling pathway-related proteins were expressed in the bladder, and were correlated with the western blot results. Our results suggest successful establishment of an orthotopic mouse NMIBC model expressing the mTOR signaling pathway using KU-7-luc cells. This model is expected to be helpful to evaluate preclinical testing of intravesical therapy based on the mTOR signaling pathway against NMIBC.


Subject(s)
Animals , Blotting, Western , Cell Line, Tumor , Disease Models, Animal , Female , Genes, Reporter , Green Fluorescent Proteins/genetics , Humans , Immunohistochemistry , Luciferases, Firefly/genetics , Luminescent Measurements , Mice , Mice, Nude , Neoplasm Staging , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Transplantation, Heterologous , Urinary Bladder Neoplasms/metabolism
19.
Braz. j. med. biol. res ; 46(7): 580-588, ago. 2013. graf
Article in English | LILACS | ID: lil-682394

ABSTRACT

Sublethal ischemic preconditioning (IPC) is a powerful inducer of ischemic brain tolerance. However, its underlying mechanisms are still not well understood. In this study, we chose four different IPC paradigms, namely 5 min (5 min duration), 5×5 min (5 min duration, 2 episodes, 15-min interval), 5×5×5 min (5 min duration, 3 episodes, 15-min intervals), and 15 min (15 min duration), and demonstrated that three episodes of 5 min IPC activated autophagy to the greatest extent 24 h after IPC, as evidenced by Beclin expression and LC3-I/II conversion. Autophagic activation was mediated by the tuberous sclerosis type 1 (TSC1)-mTor signal pathway as IPC increased TSC1 but decreased mTor phosphorylation. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and hematoxylin and eosin staining confirmed that IPC protected against cerebral ischemic/reperfusion (I/R) injury. Critically, 3-methyladenine, an inhibitor of autophagy, abolished the neuroprotection of IPC and, by contrast, rapamycin, an autophagy inducer, potentiated it. Cleaved caspase-3 expression, neurological scores, and infarct volume in different groups further confirmed the protection of IPC against I/R injury. Taken together, our data indicate that autophagy activation might underlie the protection of IPC against ischemic injury by inhibiting apoptosis.


Subject(s)
Animals , Male , Rats , Apoptosis/physiology , Autophagy/physiology , Brain Ischemia/physiopathology , Ischemic Preconditioning/methods , Nerve Degeneration/prevention & control , Reperfusion Injury/metabolism , Adenine/analogs & derivatives , Adenine/pharmacology , Brain Ischemia/prevention & control , /metabolism , Cerebrum/injuries , In Situ Nick-End Labeling , Immunosuppressive Agents/pharmacology , Rats, Sprague-Dawley , Sirolimus/pharmacology , Time Factors , TOR Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/metabolism
20.
Braz. j. med. biol. res ; 46(4): 343-347, 05/abr. 2013. graf
Article in English | LILACS | ID: lil-671388

ABSTRACT

The activation of competing intracellular pathways has been proposed to explain the reduced training adaptations after concurrent strength and endurance exercises (CE). The present study investigated the acute effects of CE, strength exercises (SE), and endurance exercises (EE) on phosphorylated/total ratios of selected AMPK and Akt/mTOR/p70S6K1 pathway proteins in rats. Six animals per exercise group were killed immediately (0 h) and 2 h after each exercise mode. In addition, 6 animals in a non-exercised condition (NE) were killed on the same day and under the same conditions. The levels of AMPK, phospho-Thr172AMPK (p-AMPK), Akt, phospho-Ser473Akt (p-Akt), p70S6K1, phospho-Thr389-p70S6K1 (p-p70S6K1), mTOR, phospho-Ser2448mTOR (p-mTOR), and phospho-Thr1462-TSC2 (p-TSC2) expression were evaluated by immunoblotting in total plantaris muscle extracts. The only significant difference detected was an increase (i.e., 87%) in Akt phosphorylated/total ratio in the CE group 2 h after exercise compared to the NE group (P = 0.002). There were no changes in AMPK, TSC2, mTOR, or p70S6K1 ratios when the exercise modes were compared to the NE condition (P ≥ 0.05). In conclusion, our data suggest that low-intensity and low-volume CE might not blunt the training-induced adaptations, since it did not activate competing intracellular pathways in an acute bout of strength and endurance exercises in rat skeletal muscle.


Subject(s)
Animals , Male , Rats , Muscle Strength/physiology , Muscle, Skeletal/enzymology , Physical Conditioning, Animal/physiology , Physical Endurance/physiology , Protein Kinases/metabolism , AMP-Activated Protein Kinases/metabolism , Immunoblotting , Muscle, Skeletal/physiology , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Rats, Wistar , /metabolism , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL