Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Year range
Article in Chinese | WPRIM | ID: wpr-828518


OBJECTIVE@#To explore the effects of taurolithocholic acid (tLCA) and chenodeoxycholic acid (CDCA) on the expression of aorexigenic neuropeptide in mouse hypothalamus GT1-7 cells.@*METHODS@#Mouse hypothalamic GT1-7 cells were treated with culture medium containing 10% FBS (control group, =3) or with 10 nmol/L, 100 nmol/L, 1 μmol/L and 10 μmol/L tLCA (tLCA group, =3) or CDCA (CDCA group, =3) for 12, 24 or 48 h. Real-time PCR was performed to determine the expression levels of proopiomelanocortin (POMC) mRNA in the cells, and the production levels of α-melanocyte-stimulating hormone (α-MSH) were assessed using an ELISA kit. Signal transduction and activator of transcription 3 phosphorylation (p-STAT3), threonine kinase phosphorylation (p-AKT), suppressor of cytokine signaling 3 (SOCS3), G protein-coupled bile acid receptor-1 (TGR5) and farnesoid X receptor (FXR) protein were detected by Western blotting.@*RESULTS@#Western blotting results showed that mouse hypothalamic GT1-7 cells expressed two bile acid receptors, TGR5 and FXR, whose expressions were regulated by bile acids. Real-time PCR showed that the expression of POMC mRNA was significantly increased in the cells after treatment with 10 μmol/L tLCA or CDCA for 24 h. POMC-derived anorexigenic peptide α-MSH increased significantly in GT1-7 cells after treatment with 10 μmol/L tLCA or CDCA for 24 h. Treatment of the cells with tLCA or CDCA significantly increased the expressions of intracellular signaling proteins including p-STAT3, p-AKT and SOCS3.@*CONCLUSIONS@#Mouse hypothalamic GT1-7 cells express bile acid receptors TGR5 and FXR. Bile acids tLCA or CDCA can promote the expression of POMC mRNA and increase the production of the anorexigenic peptide α-MSH. The intracellular signaling proteins p-AKT, p-STAT3 and SOCS3 are likely involved in bile acid-induced anorexigenic peptide production.

Animals , Cell Line , Chenodeoxycholic Acid , Pharmacology , Gene Expression Regulation , Hypothalamus , Cell Biology , Mice , Neuropeptides , Genetics , Metabolism , Pro-Opiomelanocortin , Genetics , RNA, Messenger , Genetics , STAT3 Transcription Factor , Metabolism , Signal Transduction , Suppressor of Cytokine Signaling 3 Protein , Metabolism , Taurolithocholic Acid , Pharmacology , alpha-MSH , Genetics
Article in English | WPRIM | ID: wpr-285283


The expression of microRNA-19b (miR-19b) in acute necrotizing pancreatitis (ANP) and its functional role in acinar cell necrosis of SD rats were investigated. Twelve SD rats were divided into two groups randomly, including control group and ANP group. The rat ANP models were established by intraperitoneal injection of L-arginine (2400 mg/kg body weight), and equal volume of 0.9% NaCl was injected in the control group. MiRNA chip assay was performed to examine the expression of miRNAs in the pancreas in two different groups. Besides, to further explore the role of miR-19b in ANP in vitro, taurolithocholic acid 3-sulfate disodium salt (TLC-S) (200 μmol/L) was administrated to treat the rat pancreatic acinar cell line, AR42J, for establishing the ANP cells model. The quantitative real-time PCR (qRT-PCR) was adopted to measure the miR-19b expression. Moreover, the mimic miRNA, miRNA antisense oligonucleotide (AMO) and control vector were used to transfect AR42J cells, the expression of miR-19b was confirmed by qRT-PCR and the necrotizing rate of AR42J cells was detected with AO/EB method. The expression of miR-19b was significantly higher in ANP group than in control group as displayed by the miRNA chip assay. Furthermore, after inducing necrosis of AR42J cells in vitro, the expression of miR-19b was significantly increased by 2.51±0.14 times in comparison with the control group. As revealed by qRT-PCR assay, the expression of miR-19b was 5.94±0.95 times higher in the mimic miRNA group than in the control vector group, companied with an obviously increased acinar cell necrotizing rate (50.3%±1.5% vs. 39.6%±2.3%, P<0.05). Moreover, the expression of miR-19b in the miRNA AMO group was 0.38±0.15 times lower than in the control vector group, and the cell necrosis rate was much lower accordingly (23.1%±3.3% vs. 39.6%±2.3%, P<0.05). Besides, there was no significant difference between the control vector cells and the cells without treatment (P>0.05). The expression of miR-19b was significantly induced in ANP. In addition, up-regulation of miR-19b could promote the necrosis of pancreatic acinar cells and miR-19b deficiency could decrease the rate of pancreatic acinar cell necrosis.

Acinar Cells , Metabolism , Pathology , Animals , Arginine , Toxicity , Cell Line , MicroRNAs , Genetics , Metabolism , Necrosis , Pancreatitis, Acute Necrotizing , Metabolism , Rats , Rats, Sprague-Dawley , Taurolithocholic Acid , Toxicity , Up-Regulation