Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 398
Filter
1.
Biomedical and Environmental Sciences ; (12): 54-70, 2024.
Article in English | WPRIM | ID: wpr-1007908

ABSTRACT

OBJECTIVE@#The aim of this study is to explore the potential modulatory role of quercetin against Endotoxin or lipopolysaccharide (LPS) induced septic cardiac dysfunction.@*METHODS@#Specific pathogen-free chicken embryos ( n = 120) were allocated untreated control, phosphate buffer solution (PBS) vehicle, PBS with ethanol vehicle, LPS (500 ng/egg), LPS with quercetin treatment (10, 20, or 40 nmol/egg, respectively), Quercetin groups (10, 20, or 40 nmol/egg). Fifteen-day-old embryonated eggs were inoculated with abovementioned solutions via the allantoic cavity. At embryonic day 19, the hearts of the embryos were collected for histopathological examination, RNA extraction, real-time polymerase chain reaction, immunohistochemical investigations, and Western blotting.@*RESULTS@#They demonstrated that the heart presented inflammatory responses after LPS induction. The LPS-induced higher mRNA expressions of inflammation-related factors (TLR4, TNFα, MYD88, NF-κB1, IFNγ, IL-1β, IL-8, IL-6, IL-10, p38, MMP3, and MMP9) were blocked by quercetin with three dosages. Quercetin significantly decreased immunopositivity to TLR4 and MMP9 in the treatment group when compared with the LPS group. Quercetin significantly decreased protein expressions of TLR4, IFNγ, MMP3, and MMP9 when compared with the LPS group. Quercetin treatment prevented LPS-induced increase in the mRNA expression of Claudin 1 and ZO-1, and significantly decreased protein expression of claudin 1 when compared with the LPS group. Quercetin significantly downregulated autophagy-related gene expressions (PPARα, SGLT1, APOA4, AMPKα1, AMPKα2, ATG5, ATG7, Beclin-1, and LC3B) and programmed cell death (Fas, Bcl-2, CASP1, CASP12, CASP3, and RIPK1) after LPS induction. Quercetin significantly decreased immunopositivity to APOA4, AMPKα2, and LC3-II/LC3-I in the treatment group when compared with the LPS group. Quercetin significantly decreased protein expressions of AMPKα1, LC3-I, and LC3-II. Quercetin significantly decreased the protein expression to CASP1 and CASP3 by immunohistochemical investigation or Western blotting in treatment group when compared with LPS group.@*CONCLUSION@#Quercetin alleviates cardiac inflammation induced by LPS through modulating autophagy, programmed cell death, and myocardiocytes permeability.


Subject(s)
Chick Embryo , Animals , Quercetin/therapeutic use , Lipopolysaccharides/toxicity , Matrix Metalloproteinase 9 , Caspase 3 , Matrix Metalloproteinase 3 , Toll-Like Receptor 4 , Claudin-1 , Inflammation/metabolism , Apoptosis , RNA, Messenger , Autophagy , NF-kappa B
2.
Int. j. morphol ; 41(6): 1870-1880, dic. 2023. ilus, tab
Article in English | LILACS | ID: biblio-1528799

ABSTRACT

SUMMARY: The aim of this study is to reveal the gonadoprotective effects of myricetin (MYC), which has many biological properties, on cisplatin (CP)-induced testicular damage in rats. For this purpose, 40 male Wistar albino rats were divided into 4 groups as Control (group given no treatment), MYC (group given 5 mg/kg/i.p myricetin for 7 days), CP (group given 7 mg/kg/i.p cisplatin at 7th day) and MYC + CP (group given 5 mg/kg/i.p myricetin for 7 days before 7 mg/kg/i.p cisplatin injection). After administrations, testicular tissues of animals were extracted and processed according to tissue processing protocol. Hematoxylin & Eosin staining were performed to evaluate the histopathological changes and Johnsen'sTesticular Biopsy Score (JTBS) was applied and mean seminiferous tubule diameters (MSTD) were measured to compare experimental groups in terms of histopathological changes. Moreover, TLR4, NF-kB, HSP70 and HSP90 expression levels were detected by immunohistochemical staining and the density of immunoreactivity were measured to determine the difference in the expression levels of these factors among groups. Additionally, testicular apoptosis was detected via TUNEL assay. JTBS and MSTD data were significantly lower in CP group compared to other groups and MYC administrations significantly protects testicular tissue against CP-induced damage. Moreover, TLR4, NF-kB, HSP70 and HSP90 expressions and apoptotic cells significantly increased in the CP group (p<0.05). However, MYC administrations exerted a strong gonadoprotective effect on testicular tissue in terms of these parameters in MYC+CP group (p<0.05). According to our results, we suggested that MYC can be considered as a protective agent against cisplatin-induced testicular damage.


El objetivo de este estudio es revelar los efectos gonadoprotectores de la miricetina (MYC), que tiene muchas propiedades biológicas, sobre el daño testicular inducido por cisplatino (CP) en ratas. Para este propósito, se dividieron 40 ratas albinas Wistar macho en 4 grupos: Control (grupo que no recibió tratamiento), MYC (grupo que recibió 5 mg/kg/i.p de miricetina durante 7 días), CP (grupo que recibió 7 mg/kg/i.p de cisplatino al séptimo día) y MYC + CP (grupo que recibió 5 mg/ kg/i.p de miricetina durante 7 días antes de la inyección de 7 mg/ kg/i.p de cisplatino). Después de las administraciones, se extrajeron y procesaron tejidos testiculares de animales según el protocolo de procesamiento de tejidos. Se realizó tinción con hematoxilina y eosina para evaluar los cambios histopatológicos y se aplicó la puntuación de biopsia testicular de Johnsen (JTBS) y se midieron los diámetros medios de los túbulos seminíferos (MSTD) para comparar los grupos experimentales en términos de cambios histopatológicos. Además, los niveles de expresión de TLR4, NF-kB, HSP70 y HSP90 se detectaron mediante tinción inmunohistoquímica y se midió la densidad de inmunorreactividad para determinar la diferencia en los niveles de expresión de estos factores entre los grupos. Además, se detectó apoptosis testicular mediante el ensayo TUNEL. Los datos de JTBS y MSTD fueron significativamente más bajos en el grupo CP en comparación con otros grupos y las administraciones de MYC protegen significativamente el tejido testicular contra el daño inducido por CP. Además, las expresiones de TLR4, NF-kB, HSP70 y HSP90 y las células apoptóticas aumentaron significativamente en el grupo CP (p<0,05). Sin embargo, las administraciones de MYC ejercieron un fuerte efecto gonadoprotector sobre el tejido testicular en términos de estos parámetros en el grupo MYC+CP (p<0,05). Según nuestros resultados, sugerimos que MYC puede considerarse como un agente protector contra el daño testicular inducido por cisplatino.


Subject(s)
Animals , Male , Rats , Testis/drug effects , Testis/injuries , Flavonoids/administration & dosage , Cisplatin/toxicity , Flavonoids/pharmacology , Immunohistochemistry , NF-kappa B , Rats, Wistar , Heat-Shock Response , In Situ Nick-End Labeling , Toll-Like Receptor 4 , Inflammation , Antineoplastic Agents/toxicity
3.
Int. j. morphol ; 41(2): 625-633, abr. 2023. ilus, tab
Article in English | LILACS | ID: biblio-1440306

ABSTRACT

SUMMARY: One of the reasons for acute kidney damage is renal ischemia. Nevertheless, there are limited protective and therapeutic approaches for this problem. Diacerein is an anti-inflammatory drug characterized by numerous biological activities. We aimed to determine the ameliorative impact of diacerein on renal ischemia/reperfusion injury (I/R) condition, exploring the underlying mechanisms. Twenty-four male rats were allotted into four groups (n= 6): sham group; Diacerein (DIA) group; I/R group, in which a non-crushing clamp occluded the left renal pedicle for 45 min, and the right kidney was nephrectomized for 5 min before the reperfusion process; I/R + diacerein group, injected intraperitoneally with 50 mg diacerein/kg i.m 30 minutes prior to I/R operation. Ischemia/ reperfusion was found to affect renal function and induce histopathological alterations. The flow cytometry analysis demonstrated an elevated expression of innate and mature dendritic cells in I/R renal tissues. Moreover, upregulation in the expression of the inflammatory genes (TLR4, Myd88, and NLRP3), and overexpression of the pro-inflammatory cytokines (IL-1β), apoptotic (caspase-3) and pyroptotic (caspase-1) markers were observed in I/R-experienced animals. The aforementioned deteriorations were mitigated by pre-I/R diacerein treatment. Diacerein alleviated I/R-induced inflammation and apoptosis. Thus, it could be a promising protective agent against I/R.


La isquemia renal es una de los motivos del daño renal agudo. Sin embargo, los enfoques protectores y terapéuticos para este problema son limitados. La diacereína es un fármaco antiinflamatorio caracterizado por numerosas actividades biológicas. Nuestro objetivo fue determinar el impacto de mejora de la diacereína en la condición de lesión por isquemia/ reperfusión renal (I/R), explorando los mecanismos subyacentes. Veinticuatro ratas macho se distribuyeron en cuatro grupos (n= 6): grupo simulado; grupo de diacereína (DIA); grupo I/R, en el que una pinza no aplastante ocluyó el pedículo renal izquierdo durante 45 min, y el riñón derecho fue nefrectomizado durante 5 min antes del proceso de reperfusión; Grupo I/R + diacereína, inyectado por vía intraperitoneal con 50 mg de diacereína/kg i.m. 30 min antes de la operación I/R. Se encontró que la isquemia/ reperfusión afecta la función renal e induce alteraciones histopatológicas. El análisis de citometría de flujo demostró una expresión elevada de células dendríticas innatas y maduras en tejidos renales I/R. Además, se observó una regulación positiva en la expresión de los genes inflamatorios (TLR4, Myd88 y NLRP3) y una sobreexpresión de las citoquinas proinflamatorias (IL-1β), marcadores apoptóticos (caspasa-3) y piroptóticos (caspasa-1) en animales con experiencia en I/R. Los deterioros antes mencionados fueron mitigados por el tratamiento previo a la diacereína I/R. La diacereína alivió la inflamación y la apoptosis inducidas por I/R. Por lo tanto, podría ser un agente protector prometedor contra I/R.


Subject(s)
Animals , Rats , Reperfusion Injury/drug therapy , Anthraquinones/administration & dosage , Kidney Diseases/drug therapy , Anti-Inflammatory Agents/administration & dosage , Dendritic Cells/drug effects , Reperfusion Injury/immunology , Signal Transduction , NF-kappa B/metabolism , Anthraquinones/immunology , Apoptosis/drug effects , Oxidative Stress , Toll-Like Receptor 4/metabolism , Interleukin-1beta/metabolism , Flow Cytometry , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammation , Injections, Intraperitoneal , Kidney Diseases/immunology
4.
Braz. J. Anesth. (Impr.) ; 73(4): 441-445, 2023. graf
Article in English | LILACS | ID: biblio-1447632

ABSTRACT

Abstract Background Morphine is an analgesic agent used for cancer pain management. There have been recent concerns that the immunosuppressant properties of morphine can also promote cancer metastasis. Morphine is an agonist for toll like receptor 4 (TLR4) that has a dual role in cancer development. The promotor or inhibitor role of morphine in cancer progression remains controversial. We investigated the effects of morphine on migration and metastasis of melanoma cells through TLR4 activation. Methods Mouse melanoma cells (B16F10) were treated with only morphine (0, 0.1, 1, and 10 μM) or in combination with a TLR4 inhibitor (morphine10 μM +CLI-095 1μM) for either 12 or 24 hours. Migration of cells was analyzed by transwell migration assays. Twenty C57BL/6 male mice were inoculated with B16F10 cells via the left ventricle of the heart and then randomly divided into two groups (n = 10 each) that received either morphine (10 mg.kg−1, sub-q) or PBS injection for 21 days (control group). Animals were euthanized and their lungs removed for evaluation of metastatic nodules. Results Morphine (0.1, 1, and 10 μM) increased cell migration after 12 hours (p < 0.001) and after 24 hours of treatment with morphine (10 μM) (p < 0.001). Treatment with CLI-095 suppressed migration compared to cells treated with morphine alone (p < 0.001). Metastatic nodules in the morphine-treated group (64 nodules) were significantly higher than in the control group (40 nodules) (p < 0.05). Conclusion Morphine increases the migration and metastasis of mouse melanoma cells by activating TLR4.


Subject(s)
Animals , Male , Rats , Lung Neoplasms/drug therapy , Lung Neoplasms/secondary , Melanoma/pathology , Morphinum/pharmacology , Toll-Like Receptor 4
5.
Journal of Clinical Otorhinolaryngology Head and Neck Surgery ; (12): 790-795, 2023.
Article in Chinese | WPRIM | ID: wpr-1011044

ABSTRACT

Objective:By detecting the levels of proteins in the Toll-like receptor-4/nuclear factor-κB (TLR4/NF-κB) signaling pathway and downstream proinflammatory cytokines in peripheral blood of patients with Meniere's disease (MD), Pittsburgh Sleep Quality Index (PSQI) scores were collected to investigate the correlation between sleep disorders and MD and the role of TLR4/NF-κB signaling pathway in mediating sleep disorders inducing MD. Methods:Thirty-two MD patients and 20 family members of patients without middle ear and inner ear related diseases were selected. Basic data, PSQI and fasting peripheral blood of all subjects were collected. Enzyme linked immunosorbent assay.The levels of interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), monocyte chemokine-1(MCP-1), Toll-like receptor 4(TLR4) and nuclear factor-κB(NF-κB) in peripheral blood were detected by ELISA, and the data were statistically analyzed. Results:①PSQI score of MD group was higher than that of normal control group, and the difference was statistically significant(P<0.01); The scores of every factors of PSQI in MD group were higher than those in normal control group, and the scores of factors 2, 4 and 6 were significantly different from those in normal control group. ②In the MD group, there were 18 patients with sleep disorders, with a prevalence rate of 56.25%, including 6 males with a prevalence rate of 50.00% and 12 females with a prevalence rate of 60.00%. ③The levels of five test indexes in MD group, sleep disorder group and non-sleep disorder group were higher than those in control group, and the levels of TLR4 and NF-κB in MD group were significantly different from those in control group(P<0.05). The levels of IL-1β, TNF-α, TLR4 and NF-κB in sleep disorder group were significantly different from those in control group(P<0.05). The levels of five test indexes in non-sleep disorder group were not statistically significant compared with those in control group. The levels of five test indexes in the MD sleep disorder group were higher than those in the MD group and the non-sleep disorder group, with no statistical significance. The levels of five test indexes in MD group were higher than those in non-sleep disorder group, with no statistical significance(P>0.05). Conclusion:①Sleep disorders may be one of the important predisposing factors of some MD, and the effects of sleep disorders on MD are different between the sexes. ②Sleep disorders may activate TLR4/NF-κB signaling pathway to induce MD. The selection of TLR4/NF-κB signaling pathway related proteins and downstream pro-inflammatory factor inhibitors to intervene MD may provide a new idea for protecting the hearing balance function of MD.


Subject(s)
Female , Humans , Male , Meniere Disease , NF-kappa B/metabolism , Signal Transduction , Sleep Deprivation , Toll-Like Receptor 4 , Tumor Necrosis Factor-alpha/metabolism
6.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 730-744, 2023.
Article in English | WPRIM | ID: wpr-1010986

ABSTRACT

Traditionally, Tripterygium hypoglaucum (Levl.) Hutch (THH) are widely used in Chinese folk to treat rheumatoid arthritis (RA). This study aimed to investigate whether the anti-RA effect of THH is related with the gut microbiota. The main components of prepared THH extract were identified by HPLC-MS. C57BL/6 mice with adjuvant-induced arthritis (AIA) were treated with THH extract by gavage for one month. THH extract significantly alleviated swollen ankle, joint cavity exudation, and articular cartilage destruction in AIA mice. The mRNA and protein levels of inflammatory mediators in muscles and plasma indicated that THH extract attenuated inflammatory responses in the joint by blocking TLR4/MyD88/MAPK signaling pathways. THH extract remarkably restored the dysbiosis of the gut microbiota in AIA mice, featuring the increases of Bifidobacterium, Akkermansia, and Lactobacillus and the decreases of Butyricimonas, Parabacteroides, and Anaeroplasma. Furthermore, the altered bacteria were closely correlated with physiological indices and drove metabolic changes of the intestinal microbiota. In addition, antibiotic-induced pseudo germ-free mice were employed to verify the role of the intestinal flora. Strikingly, THH treatment failed to ameliorate the arthritis symptoms and signaling pathways in pseudo germ-free mice, which validates the indispensable role of the intestinal flora. For the first time, we demonstrated that THH extract protects joint inflammation by manipulating the intestinal flora and regulating the TLR4/MyD88/MAPK signaling pathway. Therefore, THH extract may serve as a microbial modulator to recover RA in clincial practice.ver RA in clincial practice.


Subject(s)
Mice , Animals , Gastrointestinal Microbiome , Tripterygium , Myeloid Differentiation Factor 88/genetics , Toll-Like Receptor 4/genetics , Mice, Inbred C57BL , Arthritis, Experimental/drug therapy
7.
Journal of Zhejiang University. Medical sciences ; (6): 627-635, 2023.
Article in English | WPRIM | ID: wpr-1009923

ABSTRACT

OBJECTIVES@#To explore the mechanism of Chinese medicine Jiangzhuo mixture regulating glucose and lipid metabolism in obese rats.@*METHODS@#Thirty healthy male SD rats were randomly divided into normal control group, model control group, and Jiangzhuo mixture treatment group, with 10 rats in each group. The rats in the normal control group were fed with normal diet, the obesity model was induced by feeding high-fat diet in the model control group and the Jiangzhuo mixture treatment group, the rats in the treatment group were given with Jiangzhuo mixture 50 g/kg by gavage. After 8 weeks of intervention, the blood glucose (GLU), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) levels were measured in the three groups. Quantitative reverse transcription PCR were used to detect the expression levels of PR domain containing 16 (PRDM16) and uncoupling protein 1 (UCP1) in white and brown adipose tissues of the rats in each group; Western blotting was used to detect the expression of PRDM16 in the white and brown adipose tissue of rats, and Toll-like receptor 4 (TLR4), nuclear factor-κB (NF-κB) and inhibitor of NF-κB alpha (IκBα) in the white adipose tissue; immunohistochemistry was used to detect the expression of UCP1 protein in white and brown adipose tissues.@*RESULTS@#Compared with the normal control group, the white fat weight (P<0.01), white fat coefficient (P<0.05) and Lee's coefficient (P<0.01) were significantly increased in the model control group; the contents of GLU, TC, TG and LDL-C were all increased, and the content of TG was significantly increased (P<0.05) in the model control group. The mRNA and protein expression levels of PRDM16 and UCP1 in white fat and brown fat were significantly decreased (P<0.05) in the model control group. Compared with the model control group, the white fat weight and white fat coefficient and Lee's coefficient were significantly reduced in the Jiangzhuo mixture treatment group (all P<0.01), the levels of GLU, TC, TG, and LDL-C in the the treatment group were all reduced, and the content of TG was reduced more obviously (P<0.01); expression levels of PRDM16 and UCP1 mRNA and protein were increased in brown and white adipose tissue. Compared with the normal control group, the expression levels of TLR4, phospho-IκBα and NF-κB-p65 proteins in white adipose tissue of the model control group were significantly increased (all P<0.01), while the expression levels of these proteins in the treatment group were significantly lower than those in the model control group (all P<0.05).@*CONCLUSIONS@#Jiangzhuo mixture can alleviate high-fat diet-induced increase in body fat, abnormal expression of biochemical indexes and promote the expression of key proteins including UCP1 and PRDM16 in white and brown adipose tissues by regulating TLR4/IκBα/NF-κB signaling pathway.


Subject(s)
Rats , Male , Animals , NF-kappa B/metabolism , Rats, Sprague-Dawley , Glucose , Lipid Metabolism , Toll-Like Receptor 4 , Cholesterol, LDL/metabolism , NF-KappaB Inhibitor alpha/metabolism , Medicine, Chinese Traditional , Signal Transduction , Triglycerides , Transcription Factors/metabolism , Obesity , RNA, Messenger
8.
Chinese Journal of Cellular and Molecular Immunology ; (12): 865-871, 2023.
Article in Chinese | WPRIM | ID: wpr-1009442

ABSTRACT

Objective To investigate the effect of intestinal mucosal Toll-like receptor 4/nuclear factor κB (TLR4/NF-κB) signaling pathway on renal damage in pseudo-sterile IgA nephropathy (IgAN) mice. Methods C57BL/6 mice were randomly divided into experimental group (pseudosterile mouse model group), control group (IgAN mouse model group), pseudosterile mouse blank group, and normal mouse blank group. Pseudosterile mice were established by intragastric administration of quadruple antibiotics once a day for 14 days. The pseudosterile IgAN mouse model was set up by combination of oral bovine serum albumin (BSA) administration and staphylococcal enterotoxin B (SEB) injection. The pathological changes of renal tissue were observed by immunofluorescence staining and PAS staining, and the intestinal mucosa barrier damage indicators lipopolysaccharide(LPS), soluble intercellular adhesion molecule 1(sICAM-1) and D-lactate(D-LAC) were analyzed by ELISA. Biochemical analysis was used to test 24 hour urine protein, serum creatinine and blood urea nitrogen. The mRNA and protein levels of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88) and nuclear factor κB (NF-κB) were detected by reverse transcription PCR and Western blot analysis. Results The kidney damage of pseudosterile IgAN mice was more severe than that of IgAN mice, and the expressions of intestinal mucosal barrier damage markers (LPS, sICAM-1 and D-LAC) were significantly increased in pseudosterile IgAN mice. In addition, the expressions of TLR4, MyD88, and NF-κB level were all up-regulated in the intestinal tissues of IgAN pseudosterile mice. Conclusion Intestinal flora disturbance leads to intestinal mucosal barrier damage and induces activation of TLR4 signaling pathway to mediate renal injury in IgAN.


Subject(s)
Animals , Mice , Mice, Inbred C57BL , Glomerulonephritis, IGA , NF-kappa B , Toll-Like Receptor 4/genetics , Lipopolysaccharides , Myeloid Differentiation Factor 88/genetics , Kidney , Intestinal Mucosa , Infertility , Disease Models, Animal
9.
Chinese Journal of Cellular and Molecular Immunology ; (12): 801-806, 2023.
Article in Chinese | WPRIM | ID: wpr-1009433

ABSTRACT

Objective To investigate the effect of salidroside on intestinal mucosal immune status in rats under compound stress of hypoxia and training (HTCS) and the mechanism. Methods SD rats were randomly divided into HTCS model group (model), placebo group (placebo) and salidroside group (salidro). Model group received no intervention, and placebo and salidro group received intraperitoneal injection of normal saline and salidroside, respectively. Then, ileum tissue of rats were collected and the intestinal damage was assayed by HE staining and Chiu scores. Intestinal permeability indices, including serum D-diamine oxidase (DAO), D-lactic acid (DLA) and endotoxin (END) and secretory immunoglobulin A (sIgA) of intestinal tissue were detected by ELISA. T lymphocyte subsets of intestinal tissue were detected by flow cytometry. Expression of tight junction molecules, including ZO-1, Claudin-3, occluding, were detected by PCR and western blot. Activation of TLR4/NF-κB signaling pathway was detected by Western blot analysis. Results Compared with model group and placebo group, salidro group had the decreased intestinal mucosal injury and low Chiu score, and the level of intestinal permeability indices including serum DAO, DLA and END fell off. CD4+ T cell percentage, CD4+/CD8+ ratio and sIgA level were went up, while CD8+ T cell percentage was went down. mRNA and the level of protein expressions of ZO-1, claudin-3 and occludin increased, while activation of TLR4/NF-κB signaling pathway was inhibited. Conclusion Salidroside can alleviate the intestinal barrier injury and improve intestinal mucosal immune status of rats under compound stress of hypoxia and training via inhibiting TLR4/NF-κB signalling pathway.


Subject(s)
Animals , Rats , Rats, Sprague-Dawley , NF-kappa B , Toll-Like Receptor 4/genetics , Claudin-3 , Hypoxia , Immunoglobulin A, Secretory , Signal Transduction
10.
Chinese Journal of Cellular and Molecular Immunology ; (12): 680-685, 2023.
Article in Chinese | WPRIM | ID: wpr-1009417

ABSTRACT

Objective To investigate the role of microRNA-18a (miR-18a) in the pathogenesis of allergic rhinitis in mice. Methods Twenty-two BALB/c mice were randomly divided into a blank group, a model group and a miR-18a group. Mice in the model group and the miR-18a group were injected intraperitoneally with obumin (OVA) suspension to prepare allergic rhinitis models, and mice in the miR-18a group were simultaneously given lentiviral vector plasmid for overexpression of miR-18a. Allergy symptoms were evaluated by the behavioral score and HE staining. The plasma levels of interleukin-1β (IL-1β), IL-6 and tumor necrosis factor α (TNF-α) were measured by ELISA. The distribution of CD45+ cells in nasal mucosa was measured by immunofluorescence histochemistry, and CD45+ cells in nasal lavage fluid were measured by flow cytometry. The mRNA expression levels of IL-1β, IL-6 and TNF-α in nasal mucosa tissues were measured by fluorescence quantitative PCR, and the protein expressions of Toll like receptor 4 (TLR4), nuclear factor κB p65 (NF-κB p65), inhibitor of NF-κB α (IκBα) and phosphorylated IκBα (p-IκBα) in nasal mucosa were measured by Western blot analysis. Results Compared with the blank group, the plasma levels of IL-1β, IL-6, and TNF-α in the model group increased significantly. The number of CD45+ cells in both nasal mucosa tissue and nasal irrigation fluid increased, and the mRNA levels of IL-1β, IL-6 and TNF-α and the protein expression levels of TLR4, NF-κB p65 and p-IκBα in nasal mucosa increased. Compared with the model group, the plasma levels of IL-1β, IL-6 and TNF-α in the miR-18a group decreased significantly. The number of CD45+ cells in both nasal mucosa tissue and nasal lavage fluid decreased, and the mRNA levels of IL-1β, IL-6 and TNF-α and the exprotein expression levels of TLR4, NF-κB p65 and p-IκBα in nasal mucosa decreased. Conclusion miR-18a can inhibit the occurrence and development of allergic rhinitis, and its molecular mechanism is related to the inhibition of TLR4/NF-κB pathway activation.


Subject(s)
Animals , Mice , Disease Models, Animal , Inflammation , Interleukin-6/genetics , MicroRNAs/genetics , NF-kappa B/metabolism , NF-KappaB Inhibitor alpha , Rhinitis, Allergic , RNA, Messenger , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/genetics
11.
China Journal of Chinese Materia Medica ; (24): 6107-6114, 2023.
Article in Chinese | WPRIM | ID: wpr-1008810

ABSTRACT

This study aims to investigate the mechanism of acacetin in protecting rats from cerebral ischemia-reperfusion injury via the Toll-like receptor 4(TLR4)/NOD-like receptor protein 3(NLRP3) signaling pathway. Wistar rats were randomized into sham, model, low-and high-dose acacetin, and nimodipine groups, with 10 rats in each group. The rat model of middle cerebral artery occlusion(MCAO) was established with the improved suture method in other groups except the sham group. The neurological deficit score and cerebral infarction volume of each group were evaluated 24 h after modeling. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of interleukin-1β(IL-1β), IL-6, tumor necrosis factor-α(TNF-α), malondialdehyde(MDA), supe-roxide dismutase(SOD), and glutathione(GSH). Western blot was employed to determine the expression levels of B-cell lymphonoma-2(Bcl-2), Bcl-2-associated X protein(Bax), and TLR4/NLRP3 signaling pathway-related proteins(TLR4, p-NF-κB/NF-κB, NLRP3, pro-caspase-1, cleaved caspase-1, pro-IL-1β, and cleaved IL-1β) in the rat brain tissue. Hematoxylin-eosin(HE) staining was employed to reveal the histopathological changes in the ischemic area. Compared with the sham group, the modeling of MCAO increased the neurological deficit score and cerebral infarction volume, elevated the IL-1β, IL-6, TNF-α, and MDA levels and lowered the SOD and GSH levels in the brain tissue(P<0.05). Compared with the MCAO model group, low-and high-dose acacetin and nimodipine decreased the neurological deficit score and cerebral infarction volume, lowered the IL-1β, IL-6, TNF-α, and MDA levels and elevated the SOD and GSH levels in the brain tissue(P<0.05). Compared with the sham group, the model group showed up-regulated protein levels of Bax, TLR4, p-NF-κB/NF-κB, NLRP3, pro-caspase-1, cleaved caspase-1, pro-IL-1β, and cleaved IL-1β and down-regulated protein level of Bcl-2 in the brain tissue(P<0.05). Compared with the MCAO model group, the acacetin and nimodipine groups showed down-regulated protein levels of Bax, TLR4, p-NF-κB/NF-κB, NLRP3, pro-caspase-1, cleaved caspase-1, pro-IL-1β, and cleaved IL-1β and up-regulated protein level of Bcl-2 in the brain tissue(P<0.05). In conclusion, acacetin regulates the TLR4/NLRP3 signaling pathway to inhibit neuroinflammatory response and oxidative stress, thus exerting the protective effect on cerebral ischemia-reperfusion injury in rats.


Subject(s)
Rats , Animals , NF-kappa B/metabolism , bcl-2-Associated X Protein , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Tumor Necrosis Factor-alpha/metabolism , Rats, Sprague-Dawley , Caspase 1/metabolism , Toll-Like Receptor 4/metabolism , Nimodipine/pharmacology , Interleukin-6 , Rats, Wistar , Signal Transduction , Infarction, Middle Cerebral Artery , Reperfusion Injury/prevention & control , Superoxide Dismutase/metabolism
12.
China Journal of Chinese Materia Medica ; (24): 5294-5303, 2023.
Article in Chinese | WPRIM | ID: wpr-1008727

ABSTRACT

This paper aims to investigate the effects and mechanisms of adipose-derived stem cells-exosomes(ADSCs-exos) toge-ther with aucubin in protecting human-derived nucleus pulposus cells(NPCs) from inflammatory injury, senescence, and apoptosis. The tert-butyl hydroperoxide(TBHP)-induced NPCs were assigned into normal, model, aucubin, ADSCs-exos, and aucubin+ADSCs-exos groups. The cell viability was examined by cell counting kit-8(CCK-8), cell proliferation by EdU staining, cell senescence by senescence-associated-β-galactosidase(SA-β-Gal), and cell cycle and apoptosis by flow cytometry. Enzyme-linked immunosorbent assay was employed to examine the expression of interleukin-1β(IL-1β), IL-10, and tumor necrosis factor-α(TNF-α). Real-time fluorescence quantitative PCR and Western blot were employed to determine the mRNA and protein levels of aggregated proteoglycan(aggrecan), type Ⅱ collagen alpha 1(COL2A1), Toll-like receptor 4(TLR4), and nuclear factor-kappa B(NF-κB). The results showed that compared with the model group, the aucubin or ADSCs-exos group showed enhanced viability and proliferation of NPCs, decreased proportion of G_0/G_1 phase cells, increased proportion of S phase cells, reduced apoptosis and proportion of cells in senescence, lowered IL-1β and TNF-α levels, elevated IL-10 level, down-regulated mRNA and protein levels of TLR4 and NF-κB, and up-regulated mRNA and protein levels of aggrecan and COL2A1. Compared with the aucubin or ADSCs-exos group, the aucubin+ADSCs-exos combination further increased the viability and proliferation of NPCs, decreased the proportion of G_0/G_1 phase cells, increased the proportion of S phase cells, reduced the apoptosis and proportion of cells in senescence, lowered the IL-1β and TNF-α levels, elevated the IL-10 level, down-regulated the mRNA and protein levels of TLR4 and NF-κB, and up-regulated the mRNA and protein levels of aggrecan and COL2A1. In summary, both aucubin and ADSCs-exos could exert protective effects by inhibiting inflammatory responses, reducing apoptosis and senescence of NPCs, improving cell viability and proliferation as well as extracellular matrix synthesis, which may be associated with the inhibition of TLR4/NF-κB signaling pathway activation. The combination of both plays a synergistic role in the protective effects.


Subject(s)
Humans , NF-kappa B/metabolism , Interleukin-10 , Nucleus Pulposus/metabolism , Tumor Necrosis Factor-alpha/metabolism , Aggrecans/metabolism , Toll-Like Receptor 4/metabolism , RNA, Messenger/metabolism
13.
China Journal of Chinese Materia Medica ; (24): 4164-4172, 2023.
Article in Chinese | WPRIM | ID: wpr-1008613

ABSTRACT

The study aims to observe the effects and explore the mechanisms of Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination in the treatment of the inflammatory response of mice with atherosclerosis(AS) via the Toll-like receptor 4(TLR4)/myeloid differentiation primary response protein 88(MyD88)/nuclear factor-κB(NF-κB) signaling pathway. Male ApoE~(-/-) mice were randomly assigned into a model group, a Buyang Huanwu Decoction group, an Astragali Radix-Angelicae Sinensis Radix combination group, and an atorvastatin group, and male C57BL/6J mice of the same weeks old were used as the control group. Other groups except the control group were given high-fat diets for 12 weeks to establish the AS model, and drugs were administrated by gavage. Aortic intimal hyperplasia thickness, blood lipid level, plasma inflammatory cytokine levels, M1/M2 macrophage markers, and expression levels of proteins in TLR4/MyD88/NF-κB pathway in the vessel wall were measured to evaluate the effects of drugs on AS lesions and inflammatory responses. The results showed that the AS model was successfully established with the ApoE~(-/-) mice fed with high-fat diets. Compared with the control group, the model group showed elevated plasma total cholesterol(TC), triglyceride(TG), and low-density lipoprotein cholesterol(LDL-c) levels(P<0.05), thickened intima(P<0.01), and increased plasma tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6) levels(P<0.01). Moreover, the model group showed increased expression of vascular cell adhesion molecule-1(VCAM-1) and inducible nitric oxide synthase(iNOS)(P<0.01), inhibited expression of endothelial nitric oxide synthase(eNOS) and cluster of differentiation 206(CD206)(P<0.01), and up-regulated mRNA and protein levels of TLR4, MyD88, NF-κB inhibitor alpha(IκBα), and NF-κB in the vessel wall(P<0.05). Compared with the model group, Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination lowered the plasma TC and LDL-c levels(P<0.01), alleviated the intimal hyperplasia(P<0.01), and reduced the plasma TNF-α and IL-6 levels(P<0.05). Moreover, the two interventions promoted the expression of eNOS and CD206(P<0.05), inhibited the expression of VCAM-1 and iNOS(P<0.01), and down-regulated the mRNA and protein levels of TLR4, MyD88, IκBα, and NF-κB(P<0.05) in the vessel wall. This study indicated that Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination could delay the progression of AS, inhibit the polarization of vascular wall macrophages toward M1 type, and attenuate vascular inflammatory response by inhibiting the activation of TLR4/MyD88/NF-κB signaling pathway in the vascular wall. Astragali Radix and Angelicae Sinensis Radix were the main pharmacological substances in Buyang Huanwu Decoction for alleviating the AS vascular inflammatory response.


Subject(s)
Mice , Male , Animals , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , NF-KappaB Inhibitor alpha/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Myeloid Differentiation Factor 88/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Cholesterol, LDL , Hyperplasia , Mice, Inbred C57BL , Atherosclerosis/genetics , Apolipoproteins E/therapeutic use , RNA, Messenger
14.
Journal of Southern Medical University ; (12): 1051-1062, 2023.
Article in Chinese | WPRIM | ID: wpr-987022

ABSTRACT

OBJECTIVE@#To explore the therapeutic mechanism of Liushen Wan (LSW) against colitis-associated colorectal cancer (CAC) by network pharmacology.@*METHODS@#TCMSP, BATMAN-TCM, CNKI, PubMed, Genecards, OMIM, and TTD databases were used to obtain the related targets of LSW and CAC. The common targets of LSW and CAC were obtained using Venny online website. The PPI network was constructed using Cytoscape 3.8.2 to screen the core targets of LSW in the treatment of CAC. GO and KEGG enrichment analysis were conducted using DAVID database. The therapeutic effect of LSW on CAC was evaluated in a C57BL/6J mouse model of AOM/DSS-induced CAC by observing the changes in body weight, disease activity index, colon length, and size and number of the tumor. HE staining and RT-qPCR were used to analyze the effect of LSW on inflammatory mediators. Immunohistochemistry and TUNEL staining were used to evaluate the effect of LSW on the proliferation and apoptosis of AOM/DSS-treated colon tumor cells. Immunohistochemistry and Western blotting were used to detect the effects of LSW on the expression of TLR4 proteins in CAC mice.@*RESULTS@#Network pharmacology analysis identified 69 common targets of LSW and CAC, and 33 hub targets were screened in the PPI network. KEGG pathway enrichment analysis suggested that the effect of LSW on CAC was mediated by the Toll-like receptor signaling pathway. In the mouse model of AOM/DSS-induced CAC, LSW significantly inhibited colitis-associated tumorigenesis, reduced tumor number and tumor load (P < 0.05), obviously improved histopathological changes in the colon, downregulated the mRNA levels of proinflammatory cytokines, and inhibited the proliferation (P < 0.01) and promoted apoptosis of colon tumor cells (P < 0.001). LSW also significantly decreased TLR4 protein expression in the colon tissue (P < 0.05).@*CONCLUSION@#LSW can inhibit CAC in mice possibly by regulating the expression of TLR4 to reduce intestinal inflammation, inhibit colon tumor cell proliferation and promote their apoptosis.


Subject(s)
Mice , Animals , Toll-Like Receptor 4 , Colitis-Associated Neoplasms , Network Pharmacology , Mice, Inbred C57BL , Colonic Neoplasms/pathology
15.
Journal of Southern Medical University ; (12): 507-515, 2023.
Article in Chinese | WPRIM | ID: wpr-986956

ABSTRACT

OBJECTIVE@#To explore the mechanism of Yifei Jianpi recipe for improving cigarette smoke- induced inflammatory injury and mucus hypersecretion in cultured human bronchial epithelial cells.@*METHODS@#Serum samples were collected from 40 SD rats treated with Yifei Jianpi recipe (n=20) or normal saline (n=20) by gavage. Cultured human bronchial epithelial 16HBE cells were stimulated with an aqueous cigarette smoke extract (CSE), followed by treatment with the collected serum at different dilutions. The optimal concentration and treatment time of CSE and the medicated serum for cell treatment were determined with CCK-8 assay. The expressions of TLR4, NF-κB, MUC5AC, MUC7, and muc8 at both the mRNA and protein levels in the treated cells were examined with RT- qPCR and Western blotting, and the effects of TLR4 gene silencing and overexpression on their expressions were assessed. The expressions of TNF-α, IL-1 β, IL-6 and IL-8 in the cells were detected using ELISA.@*RESULTS@#At the optimal concentration of 20%, treatment with the medicated serum for 24 h significantly lowered the mRNA and protein expressions of TLR4, NF- κB, MUC5AC, MUC7, and MUC8 in CSE- exposed 16HBE cells, and these effects were further enhanced by TLR4 silencing in the cells. In 16HBE cells with TLR4 overexpression, the expressions of TLR4, NF-κB, MUC5AC, MUC7, and MUC8 were significantly increased after CSE exposure and were lowered following treatment with the medicated serum (P < 0.05). The medicated serum also significantly lowered the levels of TNF-α, IL-1β, IL-6 and IL-8 in CSE-exposed 16HBE cells (P < 0.05).@*CONCLUSIONS@#In the 16HBE cell model of chronic obstructive pulmonary disease (COPD), treatment with Yifei Jianpi recipe-medicated serum improves inflammation and mucus hypersecretion possibly by reducing MUC secretion and inhibiting the TLR4/NF-κB signaling pathway.


Subject(s)
Humans , Rats , Animals , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Interleukin-8/metabolism , Tumor Necrosis Factor-alpha/metabolism , Cigarette Smoking/adverse effects , Interleukin-6/metabolism , Rats, Sprague-Dawley , Pulmonary Disease, Chronic Obstructive/drug therapy , Signal Transduction , Epithelial Cells/metabolism , Mucus/metabolism , RNA, Messenger/metabolism
16.
Journal of Integrative Medicine ; (12): 194-204, 2023.
Article in English | WPRIM | ID: wpr-971652

ABSTRACT

OBJECTIVE@#This study was conducted to explore the mechanism of intestinal inflammation and barrier repair in Crohn's disease (CD) regulated by moxibustion through bile acid (BA) enterohepatic circulation and intestinal farnesoid X receptor (FXR).@*METHODS@#Sprague-Dawley rats were randomly divided into control group, CD model group, mild moxibustion group and herb-partitioned moxibustion group. CD model rats induced by 2,4,6-trinitrobenzene sulfonic acid were treated with mild moxibustion or herb-partitioned moxibustion at Tianshu (ST25) and Qihai (CV6). The changes in CD symptoms were rated according to the disease activity index score, the serum and colon tissues of rats were collected, and the pathological changes in colon tissues were observed via histopathology. Western blot, immunohistochemistry (IHC) and immunofluorescence were used to evaluate the improvement of moxibustion on intestinal inflammation and mucosal barrier in CD by the BA-FXR pathway.@*RESULTS@#Mild moxibustion and herb-partitioned moxibustion improved the symptoms of CD, inhibited inflammation and repaired mucosal damage to the colon in CD rats. Meanwhile, moxibustion could improve the abnormal expression of BA in the colon, liver and serum, downregulate the expression of interferon-γ and upregulate the expression of FXR mRNA, and inhibit Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) mRNA. The IHC results showed that moxibustion could upregulate the expression of FXR and mucin2 and inhibit TLR4 expression. Western blot showed that moxibustion inhibited the protein expression of TLR4 and MyD88 and upregulated the expression of FXR. Immunofluorescence image analysis showed that moxibustion increased the colocalization sites and intensity of FXR with TLR4 or nuclear factor-κB p65. In particular, herb-partitioned moxibustion has more advantages in improving BA and upregulating FXR and TLR4 in the colon.@*CONCLUSION@#Mild moxibustion and herb-partitioned moxibustion can improve CD by regulating the enterohepatic circulation stability of BA, activating colonic FXR, regulating the TLR4/MyD88 pathway, inhibiting intestinal inflammation and repairing the intestinal mucosal barrier. Herb-partitioned moxibustion seems to have more advantages in regulating BA enterohepatic circulation and FXR activation. Please cite this article as: Shen JC, Qi Q, Han D, Lu Y, Huang R, Zhu Y, Zhang LS, Qin XD, Zhang F, Wu HG, Liu HR. Moxibustion improves experimental colitis in rats with Crohn's disease by regulating bile acid enterohepatic circulation and intestinal farnesoid X receptor. J Integr Med. 2023; 21(2): 194-204.


Subject(s)
Rats , Animals , Crohn Disease/pathology , Moxibustion/methods , Toll-Like Receptor 4/metabolism , Rats, Sprague-Dawley , Myeloid Differentiation Factor 88/metabolism , Colitis , Inflammation , Enterohepatic Circulation , RNA, Messenger/metabolism
17.
China Journal of Chinese Materia Medica ; (24): 2538-2551, 2023.
Article in Chinese | WPRIM | ID: wpr-981330

ABSTRACT

To explore the mechanism of the active ingredients of Qishiwei Zhenzhu Pills in inhibiting the hepatorenal toxicity of the zogta component based on serum pharmacochemistry and network pharmacology, thereby providing references for the clinical safety application of Qishiwei Zhenzhu Pills. The small molecular compounds in the serum containing Qishiwei Zhenzhu Pills of mice were identified by high performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS). Then, by comprehensively using Traditional Chinese Medicines Systems Pharmacology(TCMSP), High-throughput Experiment-and Reference-guided Database(HERB), PubChem, GeneCards, SuperPred, and other databases, the active compounds in the serum containing Qishiwei Zhenzhu Pills were retrieved and their action targets were predicted. The predicted targets were compared with the targets of liver and kidney injury related to mercury toxicity retrieved from the database, and the action targets of Qishiwei Zhenzhu Pills to inhibit the potential mercury toxicity of zogta were screened out. Cytoscape was used to construct the active ingredient in Qishiwei Zhenzhu Pills-containing serum-action target network, and STRING database was used to construct the protein-protein interaction(PPI) network of intersection targets. The Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were carried out on the target genes by the DAVID database. The active ingredient-target-pathway network was constructed, and the key ingredients and targets were screened out for molecular docking verification. The results showed that 44 active compounds were identified from the serum containing Qishiwei Zhenzhu Pills, including 13 possible prototype drug ingredients, and 70 potential targets for mercury toxicity in liver and kidney were identified. Through PPI network topology analysis, 12 key target genes(HSP90AA1, MAPK3, STAT3, EGFR, MAPK1, APP, MMP9, NOS3, PRKCA, TLR4, PTGS2, and PARP1) and 6 subnetworks were obtained. Through GO and KEGG analysis of 4 subnetworks containing key target genes, the interaction network diagram of active ingredient-action target-key pathway was constructed and verified by molecular docking. It was found that taurodeoxycholic acid, N-acetyl-L-leucine, D-pantothenic acid hemicalcium, and other active ingredients may regulate biological functions and pathways related to metabolism, immunity, inflammation, and oxidative stress by acting on major targets such as MAPK1, STAT3, and TLR4, so as to inhibit the potential mercury toxicity of zogta in Qishiwei Zhenzhu Pills. In conclusion, the active ingredients of Qishiwei Zhenzhu Pills may have a certain detoxification effect, thus inhibiting the potential mercury toxicity of zogta and playing a role of reducing toxicity and enhancing effect.


Subject(s)
Animals , Mice , Medicine, Tibetan Traditional , Network Pharmacology , Molecular Docking Simulation , Tandem Mass Spectrometry , Toll-Like Receptor 4 , Medicine, Chinese Traditional , Mercury , Drugs, Chinese Herbal/toxicity
18.
Chinese Critical Care Medicine ; (12): 476-481, 2023.
Article in Chinese | WPRIM | ID: wpr-982617

ABSTRACT

OBJECTIVE@#To explore the mechanism of ursolic acid in treating sepsis using myeloid differentiation protein-2 (MD-2) as the research carrier.@*METHODS@#The affinity of ursolic acid and MD-2 was determined by biofilm interferometry technique, and the bonding mode between ursolic acid and MD-2 was tested with the aid of molecular docking technique. Raw 264.7 cells were cultured in RPMI 1640 medium and subcultured was conducted when the cell density reached 80%-90%. The second-generation cells were used for in the experiment. The effects of 8, 40 and 100 mg/L ursolic acid on cell viability were assessed by methyl thiazolyl tetrazolium (MTT) method. Cells were divided into blank group, lipopolysaccharide (LPS) group (LPS 100 μg/L) and ursolic acid group (100 μg/L LPS treatment after addition of 8, 40 or 100 mg/L ursolic acid). The effect of ursolic acid on the release of cytokines nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukins (IL-6, IL-1β) were evaluated by enzyme-linked immunosorbent assay (ELISA). The influence of ursolic acid on the mRNA expressions of TNF-α, IL-6, IL-1β, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were detected by reverse transcription-polymerase chain reaction (RT-PCR). The implication of ursolic acid on the protein expressions of LPS-Toll-like receptor 4 (TLR4)/MD-2-nuclear factor-κB (NF-κB) pathway were tested by Western blotting.@*RESULTS@#Ursolic acid could bind to the hydrophobic cavity of MD-2 through hydrophobic bond with the amino acid residues of the protein. Therefore, ursolic acid showed high affinity with MD-2 [dissociation constant (KD) = 1.43×10-4]. The cell viability were decreased slightly, with the concentration of ursolic acid increasing, and the cell viability of 8, 40 and 100 mg/L ursolic acid were 96.01%, 94.32% and 92.12%, respectively, and there was no significant difference compared with the blank group (100%). Compared with the blank group, the cytokine level of the LPS group was significantly increased. The level of cytokines were significantly reduced by the treatment of 8, 40 and 100 mg/L ursolic acid, and the higher the concentration, the more obvious effect [compared between 100 mg/L ursolic acid group and LPS group: IL-1β (μmol/L): 38.018±0.675 vs. 111.324±1.262, IL-6 (μmol/L): 35.052±1.664 vs. 115.255±5.392, TNF-α (μmol/L): 39.078±2.741 vs. 119.035±4.269, NO (μmol/L): 40.885±2.372 vs. 123.405±1.291, all P < 0.01]. Compared with the blank group, the mRNA expressions of TNF-α, IL-6, IL-1β, iNOS and COX-2 in the LPS group were significantly increased, and the protein expressions of MD-2, myeloid differentiation factor 88 (MyD88), phosphorylation NF-κB p65 (p-NF-κB p65) and iNOS in the LPS-TLR4/MD-2-NF-κB pathway were significantly up-regulated. Compared with the LPS group, the mRNA expressions of TNF-α, IL-6, IL-1β, iNOS and COX-2 were significantly reduced by the treatment of 100 mg/L ursolic acid bound with MD-2 protein [TNF-α (2-ΔΔCt): 4.659±0.821 vs. 8.652±0.787, IL-6 (2-ΔΔCt): 4.296±0.802 vs. 11.132±1.615, IL-1β (2-ΔΔCt): 4.482±1.224 vs. 11.758±1.324, iNOS (2-ΔΔCt): 1.785±0.529 vs. 4.249±0.811, COX-2 (2-ΔΔCt): 5.591±1.586 vs. 16.953±1.651, all P < 0.01], and the proteins expressions of MD-2, MyD88, p-NF-κB p65 and iNOS in the LPS-TLR4/MD-2-NF-κB pathway were significantly down-regulated (MD-2/β-actin: 0.191±0.038 vs. 0.704±0.049, MyD88/β-actin: 0.470±0.042 vs. 0.875±0.058, p-NF-κB p65/β-actin: 0.178±0.012 vs. 0.571±0.012, iNOS/β-actin: 0.247±0.035 vs. 0.549±0.033, all P < 0.01). However, there was no difference in protein expression of NF-κB p65 among the three groups.@*CONCLUSIONS@#Ursolic acid inhibits the release and expression of cytokines and mediators and regulates LPS-TLR4/MD-2-NF-κB signaling pathway by blocking MD-2 protein, and thus plays an anti-sepsis role.


Subject(s)
Humans , Tumor Necrosis Factor-alpha , Actins , Cyclooxygenase 2 , Interleukin-6 , Lipopolysaccharides , Lymphocyte Antigen 96 , Molecular Docking Simulation , Myeloid Differentiation Factor 88 , NF-kappa B , Toll-Like Receptor 4 , Sepsis , Cytokines , Cell Differentiation , RNA, Messenger
19.
Chinese Critical Care Medicine ; (12): 393-397, 2023.
Article in Chinese | WPRIM | ID: wpr-982600

ABSTRACT

OBJECTIVE@#To evaluate the effect of curcumin on renal mitochondrial oxidative stress, nuclear factor-κB/NOD-like receptor protein 3 (NF-κB/NLRP3) inflammatory body signaling pathway and tissue cell injury in rats with acute respiratory distress syndrome (ARDS).@*METHODS@#A total of 24 specific pathogen free (SPF)-grade healthy male Sprague-Dawley (SD) rats were randomly divided into control group, ARDS model group, and low-dose and high-dose curcumin groups, with 6 rats in each group. The ARDS rat model was reproduced by intratracheal administration of lipopolysaccharide (LPS) at 4 mg/kg via aerosol inhalation. The control group was given 2 mL/kg of normal saline. The low-dose and high-dose curcumin groups were administered 100 mg/kg or 200 mg/kg curcumin by gavage 24 hours after model reproduction, once a day. The control group and ARDS model group were given an equivalent amount of normal saline. After 7 days, blood samples were collected from the inferior vena cava, and the levels of neutrophil gelatinase-associated lipocalin (NGAL) in serum were determined by enzyme-linked immunosorbent assay (ELISA). The rats were sacrificed, and kidney tissues were collected. Reactive oxygen species (ROS) levels were determined by ELISA, superoxide dismutase (SOD) activity was detected using the xanthine oxidase method, and malondialdehyde (MDA) levels were determined by colorimetric method. The protein expressions of hypoxia-inducible factor-1α (HIF-1α), caspase-3, NF-κB p65, and Toll-like receptor 4 (TLR4) were detected by Western blotting. The mRNA expressions of HIF-1α, NLRP3, and interleukin-1β (IL-1β) were detected by reverse transcription-polymerase chain reaction (RT-PCR). Renal cell apoptosis was detected by TdT-mediated dUTP nick end labeling (TUNEL). The morphological changes in renal tubular epithelial cells and mitochondria were observed under a transmission electron microscope.@*RESULTS@#Compared with the control group, the ARDS model group exhibited kidney oxidative stress and inflammatory response, significantly elevated serum levels of kidney injury biomarker NGAL, activated NF-κB/NLRP3 inflammasome signaling pathway, increased kidney tissue cell apoptosis rate, and renal tubular epithelial cell damage and mitochondrial integrity destruction under transmission electron microscopy, indicating successful induction of kidney injury. Following curcumin intervention, the injury to renal tubular epithelial cells and mitochondria in the rats was significantly mitigated, along with a noticeable reduction in oxidative stress, inhibition of the NF-κB/NLRP3 inflammasome signaling pathway, and a significant decrease in kidney tissue cell apoptosis rate, demonstrating a certain dose-dependency. Compared with the ARDS model group, the high-dose curcumin group exhibited significantly reduced serum NGAL levels and kidney tissue MDA and ROS levels [NGAL (μg/L): 13.8±1.7 vs. 29.6±2.7, MDA (nmol/g): 115±18 vs. 300±47, ROS (kU/L): 75±19 vs. 260±15, all P < 0.05], significantly down-regulated protein expressions of HIF-1α, caspase-3, NF-κB p65, and TLR4 in the kidney tissue [HIF-1α protein (HIF-1α/β-actin): 0.515±0.064 vs. 0.888±0.055, caspase-3 protein (caspase-3/β-actin): 0.549±0.105 vs. 0.958±0.054, NF-κB p65 protein (NF-κB p65/β-actin): 0.428±0.166 vs. 0.900±0.059, TLR4 protein (TLR4/β-actin): 0.683±0.048 vs. 1.093±0.097, all P < 0.05], and significantly down-regulated mRNA expressions of HIF-1α, NLRP3, and IL-1β [HIF-1α mRNA (2-ΔΔCt): 2.90±0.39 vs. 9.49±1.87, NLRP3 mRNA (2-ΔΔCt): 2.07±0.21 vs. 6.13±1.32, IL-1β mRNA (2-ΔΔCt): 1.43±0.24 vs. 3.95±0.51, all P < 0.05], and significantly decreased kidney tissue cell apoptosis rate [(4.36±0.92)% vs. (27.75±8.31)%, P < 0.05], and significantly increased SOD activity (kU/g: 648±34 vs. 430±47, P < 0.05).@*CONCLUSIONS@#Curcumin can alleviate kidney injury in ARDS rats, and its mechanism may be related to the increasing in SOD activity, reduction of oxidative stress, and inhibition of the activation of the NF-κB/NLRP3 inflammasome signaling pathway.


Subject(s)
Male , Rats , Animals , Rats, Sprague-Dawley , NF-kappa B , Actins , Caspase 3 , Curcumin , Lipocalin-2 , Toll-Like Receptor 4 , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Reactive Oxygen Species , Saline Solution , Kidney , Superoxide Dismutase
20.
Neuroscience Bulletin ; (6): 911-928, 2023.
Article in English | WPRIM | ID: wpr-982435

ABSTRACT

Increased intestinal barrier permeability, leaky gut, has been reported in patients with autism. However, its contribution to the development of autism has not been determined. We selected dextran sulfate sodium (DSS) to disrupt and metformin to repair the intestinal barrier in BTBR T+tf/J autistic mice to test this hypothesis. DSS treatment resulted in a decreased affinity for social proximity; however, autistic behaviors in mice were improved after the administration of metformin. We found an increased affinity for social proximity/social memory and decreased repetitive and anxiety-related behaviors. The concentration of lipopolysaccharides in blood decreased after the administration of metformin. The expression levels of the key molecules in the toll-like receptor 4 (TLR4)-myeloid differentiation factor 88 (MyD88)-nuclear factor kappa B (NF-κB) pathway and their downstream inflammatory cytokines in the cerebral cortex were both repressed. Thus, "leaky gut" could be a trigger for the development of autism via activation of the lipopolysaccharide-mediated TLR4-MyD88-NF-κB pathway.


Subject(s)
Mice , Animals , NF-kappa B , Myeloid Differentiation Factor 88/metabolism , Lipopolysaccharides/pharmacology , Toll-Like Receptor 4/metabolism , Autistic Disorder/metabolism , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL