Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 175
Filter
1.
Article in Chinese | WPRIM | ID: wpr-928028

ABSTRACT

This study systematically searched CNKI and Web of Science(WoS) for the research papers on the toxicity of Tripterygium wilfordii included from database inception to August 31, 2021, and visually displayed the authors, research institutions, keywords, and other contents using bibliometrics and CiteSpace 5.8.3. Furthermore, the current situation and research progress on T. wilfordii safety were also analyzed based on information extraction to find the research hotspot, evolution path, and development trend, and to provide references for future research. A total of 1 876 Chinese papers and 243 English papers were included in the study. The analysis of authors showed that WANG Qi and ZHANG Luyong had the most publications in Chinese and English papers, respectively. According to the analysis of research institutions, National Institutes for Food and Drug Control and China Pharmaceutical University possessed the largest number of Chinese and English papers, respectively, but there was less cooperation between them. The analysis of keywords in Chinese and English papers showed that the research contents of the safety of T. wilfordii mainly focused on clinical monitoring, mechanism, dosage form improvement, quality standard, component analysis, monomer research, efficiency and toxicity reduction, etc. Metabonomics, tripterine, and the underlying mechanism of toxicity were the research hotspots in the future. At present, the research on the toxicity of T. wilfordii is still under development. It is necessary to highlight the in-depth research and strengthen the inter-group and inter-region cooperation of authors or institutions to provide references for the research on the toxicity of T. wilfordii.


Subject(s)
Bibliometrics , China , Drugs, Chinese Herbal/toxicity , Humans , Tripterygium
2.
Article in Chinese | WPRIM | ID: wpr-927949

ABSTRACT

This study aims to investigate the detoxification effects of different processing methods on the cardiotoxicity induced by radix Tripterygium wilfordii, and preliminarily explore the detoxification mechanism via the nuclear factor E2-related factor 2(Nrf2)/heme oxygenase 1(HO-1) pathway. The raw and processed products [stir-fried product, product stir-fried with Lysimachiae Herba(JQC), product stir-fried with Phaseoli Radiati Semen(LD), product stir-fried with Paeoniae Radix Alba(BS), product stir-fried with Glycyrrhizae Radix et Rhizoma(GC), and product stir-fried with vinegar(CZ)] of radix T. wilfordii were administrated to mice by gavage at a dose of 2 g·kg~(-1)(based on crude drugs) for 28 days. Twenty-four hours after the last administration, we measured the serum biochemical indexes of mice to evaluate the detoxification effect. Furthermore, we determined the expression of key proteins of Nrf2/HO-1 pathway in mouse heart tissue by Western blot and some oxidation/antioxidation-related indexes by corresponding kits to explore the detoxification mechanism. The administration of the raw product elevated the levels of serum creatine kinase, lactate dehydrogenase, and malondialdehyde, a product of cardiac lipid peroxidation(P<0.01), down-regulated the protein levels of Nrf2 and HO-1(P<0.01), and reduced the levels of total superoxide dismutase, glutathione, glutathione peroxidase, and glutathione S-transferase(P<0.01). However, after the administration of the products stir-fried with JQC, LD, BS, GC, and CZ, the abnormalities of the above indexes induced by the raw product were recovered(P<0.05 or P<0.01). In particular, the product stir-fried with JQC showed the best performance. Taken all together, the cardiotoxicity induced by radix T. wilfordii could be attenuated by stir-frying with JQC, LD, BS, GC, and CZ, and the stir-frying with JQC showed the best detoxification effect. The mechanism might be associated with the cardiac antioxidant defense and oxidative damage mitigation mediated by the up-regulated Nrf2.


Subject(s)
Animals , Antioxidants/pharmacology , Cardiotoxicity , Mice , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Tripterygium
3.
Article in Chinese | WPRIM | ID: wpr-941026

ABSTRACT

OBJECTIVE@#To conduct qualitative and quantitative analyses of Tripterygium hypoglaucum in Yinning Tablets, a compound preparation of traditional Chinese herbal medicine.@*METHODS@#Thin-layer chromatography (TLC) was used for qualitative analysis of Tripterygium hypoglaucum in Yining Tablets and the analytical protocols were optimized. High-performance liquid chromatography (HPLC) was used to quantitatively analyze the content of triptolide (the main active ingredient of Tripterygium hypoglaucum) in Yinning Tablets.@*RESULTS@#The results of TLC analysis showed that the test sample of Yinning Tablets and the positive control samples both produced clear, well separated spots without obvious interference in the blank samples. Assessment of the influences of the thin-layer plates from different manufacturers, temperature and humidity on the test results demonstrated good durability of the test. HPLC analysis of triptolide showed a good linear relationship within the concentration range of 1-100 μg/mL (regression equation: A=22.219C-19.165, r=0.9999); the contents of triptolide in 3 batches of Yinning tablets were 0.34, 0.34, and 0.28 μg per tablet, all within the range of 0.28-0.34 μg per tablet. It was finally determined that each Yinning tablet should not contain more than 0.6 μg of triptolide.@*CONCLUSION@#TLC and HPLC are simple, accurate, durable and specific for qualitative and quantitative analyses of Tripterygium hypoglaucum in Yinning Tablets.


Subject(s)
China , Chromatography, High Pressure Liquid/methods , Plant Preparations , Tablets , Tripterygium/chemistry
4.
Article in Chinese | WPRIM | ID: wpr-879013

ABSTRACT

On the basis of the previous work of the research group, the orthogonal design method was further used to optimize the processing technology for reducing toxicity of fried Tripterygium wilfordii in Lysimachia christinae Decoction. A total of 9 processed products of T.wilfordii in L.christinae decoction were prepared by four factors and three levels orthogonal design table. The contents of triptolide in T.wilfordii were determined by high performance liquid chromatography(HPLC) before and after processing: 4.27, 3.92, 3.57, 2.75, 2.42, 2.66, 3.51, 1.87, 1.75, 2.03 μg·g~(-1). On this basis, the above processed products were orally given to mice for 28 days. 12 hours after the last administration, food fasting except water was provided, and 24 hours later, the eyeballs were taken for blood and liver tissue. Serum biochemical indexes, liver lipid peroxidation and antioxidant related indexes were detected by kit method. Twenty-eight days after oral administration of raw T.wilfordii, the levels of serum alanine aminotransferase(AST), alanine aminotransferase(ALT), alkaline phosphatase(ALP) and liver malondialdehyde(MDA) in mice increased by 91%(P<0.01), 46%(P<0.05), 73%(P<0.01) and 99%(P<0.01), while the liver antioxidant indexes such as superoxide dismutase(SOD), glutathione(GSH), glutathione peroxidase(GPX) and glutathione-S transferase(GST) significantly decreased(P<0.01). After administration of the processed products, the above indexes were significantly reversed(P<0.01 or P<0.05). Especially, the processing conditions of A_3B_2C_1D_3 had the best detoxification effect on T.wilfordii, which decreased the high levels of AST, ALT, ALP and MDA by 49%(P<0.01), 32%(P<0.01), 42%(P<0.01), and 17%(P<0.05). Therefore, the best processing conditions for T.wilfordii in L.christinae decoction were A_3B_2C_1D_3, namely "15% mass fraction of L.christinae, 1 h moistening time, 160 ℃ frying temperature, and 9 min frying time".


Subject(s)
Animals , Antioxidants , Liver , Mice , Primulaceae , Technology , Tripterygium
5.
Article in English | WPRIM | ID: wpr-922758

ABSTRACT

Tripterygium wilfordii multiglycoside (GTW) is a commonly used compound for the treatment of rheumatoid arthritis (RA) and immune diseases in clinical practice. However, it can induce liver injury and the mechanism of hepatotoxicity is still not clear. This study was designed to investigate GTW-induced hepatotoxicity in zebrafish larvae and explore the mechanism involved. The 72 hpf (hours post fertilization) zebrafish larvae were administered with different concentrations of GTW for three days and their mortality, malformation rate, morphological changes in the liver, transaminase levels, and histopathological changes in the liver of zebrafish larvae were detected. The reverse transcription-polymerase chain reaction (RT-PCR) was used to examine the levels of microRNA-122 (miR-122) and genes related to inflammation, apoptosis, cell proliferation and liver function. The results showed that GTW increased the mortality of zebrafish larvae, while significant malformations and liver damage occurred. The main manifestations were elevated levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), significant liver atrophy, vacuoles in liver tissue, sparse cytoplasm, and unclear hepatocyte contours. RT-PCR results showed that the expression of miR-122 significantly decreased by GTW; the mRNA levels of inflammation-related genes il1β, il6, tnfα, il10, cox2 and ptges significantly increased; the mRNA level of tgfβ significantly decreased; the mRNA levels of apoptosis-related genes, caspase-8 and caspase-9, significantly increased; the mRNA level of bcl2 significantly decreased; the mRNA levels of cell proliferation-related genes, top2α and uhrf1, significantly reduced; the mRNA levels of liver function-related genes, alr and cyp3c1, significantly increased; and the mRNA level of cyp3a65 significantly decreased. In zebrafish, GTW can cause increased inflammation, enhanced apoptosis, decreased cell proliferation, and abnormal expression of liver function-related genes, leading to abnormal liver structure and function and resulting in hepatotoxicity.


Subject(s)
Animals , Apoptosis , Chemical and Drug Induced Liver Injury/genetics , Inflammation/genetics , Trans-Activators , Tripterygium , Zebrafish/genetics , Zebrafish Proteins
6.
Article in Chinese | WPRIM | ID: wpr-773710

ABSTRACT

To evaluate the effect of Tripterygium Glycosides Tablets extract in the treatment of rheumatoid arthritis( RA). Clinical trials of treating rheumatoid arthritis with Tripterygium Glycosides Tablets published by Meta-analysis were retrieved from EMbase,PubMed,Clinical Trials,Web of Science,Cochrane Library,CNKI,Wanfang,VIP,CBM and Chi CTR,and comprehensively analyzed. A total of 3 studies were enrolled,the modified Sharp score( m TSS),tender join joint erosions( JE) and joint space narrowing( JSN) of Tripterygium Glycosides Tablets group were significant superior to those of control group,including positive drugs methotrexate( MTX) and salazopyridine( SSZ)( P<0. 01). Tripterygium Glycosides Tablets had an effect in treating RA. Due to the small sample size,this study shall be verified with high-quality,large-sample-size double-blinded RCTs.


Subject(s)
Antirheumatic Agents , Pharmacology , Arthritis, Rheumatoid , Drug Therapy , Glycosides , Pharmacology , Humans , Tablets , Tripterygium , Chemistry
7.
Article in Chinese | WPRIM | ID: wpr-773709

ABSTRACT

As entering a new era,our country has introduced a series of favorable policies,which may provide the powerful and new momentum for the development of traditional Chinese medicine( TCM). However,more and more attentions have been paid to the safety and effectiveness of TCM. Tripterygium wilfordii Hook.f. is one of Chinese herbs with clinical efficacy and safety risk. In recent years,accumulating groups have carried out a series of exploratory studies on the clinical rational use of T. wilfordii-related preparations. Considering this situation,the goal of this special issue is to bring together a collection of original research and review articles addressing the expanding field of T. wilfordii. The special issue covers the clinical application,pharmacodynamics,toxicology,pharmacodynamics,resource identification and molecular pharmacognosy of T. wilfordii-related preparations. It focuses on the multi-disciplinary collaborative innovation,and may provide a stimulating resource for the fascinating subject of the safe and rational use of TCM,as well as have important practical significance and promotion value for the healthy development of TCM industry.


Subject(s)
Drugs, Chinese Herbal , Reference Standards , Medicine, Chinese Traditional , Tripterygium
8.
Article in Chinese | WPRIM | ID: wpr-773708

ABSTRACT

Tripterygium wilfordii preparations,with various biological activities such as immunosuppressive,anti-inflammatory and anti-cancer effects,are widely used in the treatment of autoimmune diseases such as rheumatoid arthritis,lupus erythematosus,and nephrotic syndrome. They have definite therapeutic effect,but often cause serious adverse reactions and result in damages to liver,kidney,blood,reproduction,and other systems due to their complex compositions,great toxicity,and narrow margin between the toxic and therapeutic dosages. At present,T. wilfordii preparations produced by different manufacturers exhibit large variations in clinical efficacy and side effects in account of their different chemical compositions and quality fluctuation due to differences in raw materials and production process. However,the existing quality standards are controversial in terms of index components and content limit,which cannot be effectively used for the overall quality control of the preparations. In this paper,the research progress on chemical constituents,quality standard and quality control methods of four T. wilfordii preparations including Tripterygium Tablets,Tripterygium Zongtie Tablets,Tripterygium Shuangceng Tablets and Tripterygium Glycosides Tablets was reviewed,in order to provide ideas and reference for the quality improvement of this type of preparations.


Subject(s)
Drugs, Chinese Herbal , Reference Standards , Quality Control , Tablets , Tripterygium , Chemistry
9.
Article in Chinese | WPRIM | ID: wpr-773707

ABSTRACT

Traditional Chinese medicine Tripterygium wilfordii Hook.f( TWHF) is a natural botanical drug in China. It has complex chemical compositions and has been used for a long history. TWHF was used as an insecticide to protect crops at early stage,and it was later found to have significant effects in the treatment of rheumatoid arthritis,attaining great concerns. With further researches,it was found that TWHF can treat various diseases in the medical field due to a variety of pharmacological activities such as anti-cancer,neuroprotection,anti-inflammatory and immune-suppressing,particularly. Multiple extracts of TWHF have unique immunosuppressive function,playing an immune role through multi-target and multi-channel,with significant effect in the treatment of autoimmune diseases. As an immune-suppressing drug,TWHF is worthy of in-depth research due to its broad application prospects. While achieving good clinical efficacy,reports about its toxic effects to multiple systems of the body are also increasing,greatly hindering its clinical application. In order to fully understand the immune-suppressing function of TWHF and reduce or avoid the occurrence of toxic and side effects,we summarized recent progress of TWHF on the immune organs,cells and factors in recent years,as well as the pharmacology and toxic effects,hoping to provide a scientific and reasonable reference for its wider use in clinical treatment.


Subject(s)
Arthritis, Rheumatoid , Drug Therapy , Drugs, Chinese Herbal , Pharmacology , Humans , Immune System , Plant Extracts , Pharmacology , Tripterygium , Chemistry
10.
Article in Chinese | WPRIM | ID: wpr-773706

ABSTRACT

Rheumatoid arthritis( RA) is an autoimmune disease characterized by chronic and aggressive polyarthritis. The innate immunity mechanism plays a key role in the pathogenesis of RA. Tripterygium wilfordii and its extracts have regulatory effects on innate immune cells including macrophages,dendritic cells,neutrophils,mast cells,NK cells,NKT cells,etc.,as well as a variety of innate immune molecules including cytokines,adhesion molecules,patterns recognition receptor( PRR) and the complement molecules,showing a regulatory effect in the pathogenesis of RA innate immunity. In this paper,the recent domestic and foreign researches on the pathogenesis of RA with innate immunity involved were reviewed and the research status of T. wilfordii and its extracts on the regulation of innate immunity involved in RA was summarized.


Subject(s)
Arthritis, Rheumatoid , Drug Therapy , Drugs, Chinese Herbal , Therapeutic Uses , Humans , Immunity, Innate , Plant Extracts , Therapeutic Uses , Tripterygium , Chemistry
11.
Article in Chinese | WPRIM | ID: wpr-773705

ABSTRACT

Tumors are major chronic diseases and seriously threaten human health all over the world. How to effectively control and cure tumors is one of the most pivotal problems in the medical field. At present,surgery,radiotherapy and chemotherapy are still the main treatment methods. However,the side effects of radiotherapy and chemotherapy cannot be underestimated. Therefore,it is of great practical significance to find new anti-cancer drugs with low toxicity,high efficiency and targeting to cancer cells. With the increasing incidence of tumor,the anti-tumor effect of traditional Chinese medicine has increasingly become a research hotspot. Triptolide,which is a natural diterpenoid active ingredient derived from of Tripterygium wilfordii,as one of the highly active components,has anti-inflammatory,immunosuppressive,anti-tumor and other multiple effects. A large number of studies have confirmed that it has good anti-tumor activity against various tumors in vivo and in vitro. It can play an anti-tumor role by inhibiting the proliferation of cancer cells,inducing apoptosis of cancer cells,inducing autophagy of cancer cells,blocking the cell cycle,inhibiting the migration,invasion and metastasis of cancer cells,reversing multidrug resistance,mediating tumor immunity and inhibiting angiogenesis. On the basis of literatures,this paper reviews the anti-tumor effect and mechanism of triptolide,and analyzes the current situation of triptolide combined with other chemotherapy drugs,in order to promote deep research and better clinical application about triptolide.


Subject(s)
Antineoplastic Agents, Phytogenic , Pharmacology , Apoptosis , Autophagy , Cell Cycle Checkpoints , Diterpenes , Pharmacology , Epoxy Compounds , Pharmacology , Humans , Neoplasms , Drug Therapy , Phenanthrenes , Pharmacology , Tripterygium , Chemistry
12.
Article in Chinese | WPRIM | ID: wpr-773704

ABSTRACT

Tripterygium wilfordii is widely used in the treatment of rheumatism with curative effect. However,its toxicity and adverse reactions,especially the hepatotoxicity,rank the first in the herbs induced liver injury,is the key factors hindering its clinical application. This paper reviewed the literatures related to the hepatotoxicity of T. wilfordii in recent 20 years,and summarized the characteristic of hepatotoxicity induced by T. wilfordii,the factors causing liver injury,the mechanism of toxicity,and the measures to reduce toxicity. In animal experiments,the T. wilfordii induced-hepatotoxicity in physiological state was more serious than pathological state. The T. wilfordii induced-hepatotoxicity is related to various toxic components contained in it,but alkaloids are the most toxic one.Overdose and cumulative overdose are the lead causing of hepatotoxicity induced by T. wilfordii. The theory of oxidative stress is still an important mechanism of T. wilfordii induced-hepatotoxicity,and Nrf2,as a key regulatory enzyme of oxidative stress,has become an important target for drugs to against T. wilfordii induced-hepatotoxicity. Mitochondrial autophagy and liver hypersensitivity are new mechanisms of liver injury induced by T. wilfordii. The measures such as dosage control,drug compatibility and dosage form variations can help to reduce the hepatotoxicity induced by T. wilfordii. This paper clarified the current situation and shortcomings of safety research on T. wilfordii,so as to propose new research strategies and provide ideas for rational evaluation of safety and clinical safe drug use of T. wilfordii.


Subject(s)
Animals , Chemical and Drug Induced Liver Injury , Drugs, Chinese Herbal , Toxicity , Tripterygium , Toxicity
13.
Article in Chinese | WPRIM | ID: wpr-773703

ABSTRACT

This paper summarizes the research progress of reproductive toxicity of Tripterygium wilfordii from 1979,and the toxicity characterization,damage mechanism,and attenuated measures are summarized. It was found that,the reproductive toxicity caused by T. wilfordii is mainly distributed on components of Tripterygium glycosides,triptolide,tripchlorolide,and clinically preparations,such as Leigongteng Tablets and Tripterygium Glycosides Tablets. Adverse reactions to male reproductive system caused by Tripterygium preparations mainly include decreased sperm motility,oligospermia or spermatozoa,decreased fertility or infertility,etc. Long-term drug use may also lead to testicular atrophy and decreased sexual desire. Adverse reactions to women are mainly manifested as menstrual disorders,decreased menstrual volume or even amenorrhea,decreased sexual desire,infertility,etc. The reproductive toxicity of T. wilfordii is related to apoptosis of reproductive cells,disturbance of spermatogenesis or oogenesis,damage of testis and ovary in reproductive target tissues,and changes of internal environment in gonad tissues( hormones,hormone synthesis rate-limiting enzymes and energy metabolism). Drug compatibility,hormone replacement,medication duration and dosage form changes can help reduce the damage of T. wilfordii to the reproductive system. In addition,in view of the existing problems in the current study,the author proposes new directions in clinical studies,pharmacological metabolism mechanism,preparation quality standards and new therapeutic effects,etc.,to provide a basis for the safe and reasonable clinical application of T. wilfordii.


Subject(s)
Drugs, Chinese Herbal , Toxicity , Female , Genitalia , Humans , Male , Ovary , Testis , Tripterygium , Toxicity
14.
Article in Chinese | WPRIM | ID: wpr-773702

ABSTRACT

Growing clinical evidence shows that a partial rheumatoid arthritis( RA) patient treated with Tripterygium Glycosides Tablets( TGT) may fail to achieve clinical improvement. It is of great clinical significance to predict the therapeutic effect of TGT in RA. Therefore,the aim of the current study was to identify potential biomarkers for TGT treatment in RA. Affymetrix EG1.0 arrays were applied to detect gene expression in peripheral blood mononuclear cells obtained from 6 RA patients( 3 responders and 3 non-responders) treated with TGT. By integrating differential expression data analysis and biomolecular network analysis,360 mRNAs( 185 up-regulated and 175 down-regulated) and 24 miRNAs( 7 up-regulated and 17 down-regulated) which were differentially expressed between TGT responder and non-responder groups were identified. A total of 206 candidate target genes for the differentially expressed miRNAs were obtained based on miRanada and Target Scan databases,and then the miRNA target gene coexpression network and miRNA-mediated gene signal transduction network were constructed. Following the network analyses,three candidate miRNAs biomarkers( hsa-miR-4720-5 p,hsa-miR-374 b-5 p,hsa-miR-185-3 p) were identified as candidate biomarkers predicting individual response to TGT. Partialleast-squares( PLS) was applied to construct a model for predicting response to TGT based on the expression levels of the candidate gene biomarkers in RA patients. The five-fold cross-validation showed that the prediction accuracy( ACC) of this PLS-based model efficacy was 100.00%,100.00%,100.00%,66.67% and 66.67% respectively,and all the area under the receiver operating characteristic curve( AUC) were 1.00,indicating the highly predictive efficiency of this PLS-based model. In conclusion,the integrating transcription data mining and biomolecular network investigation show that hsa-mir-4720-5 p,hsa-mir-374 b-5 p and hsa-mir-185-3 p may be candidate biomarkers predicting individual response to TGT. In addition,the PLS model based on the expression levels of these candidate biomarkers may be helpful for the clinical screen of RA patients,which potentially benefit individualized therapy of RA in a daily clinical setting.


Subject(s)
Arthritis, Rheumatoid , Drug Therapy , Biomarkers , Data Mining , Drugs, Chinese Herbal , Therapeutic Uses , Glycosides , Therapeutic Uses , Humans , Leukocytes, Mononuclear , MicroRNAs , Genetics , Tablets , Tripterygium , Chemistry
15.
Article in Chinese | WPRIM | ID: wpr-773699

ABSTRACT

The aim of this paper was to investigate the anti-inflammatory effect of Tripterygium wilfordii processed with licorice on DSS-induced ulcerative colitis( UC) mice and its regulation on intestinal immune system. In this study,a DSS-induced animal model of UC mice was established,with mesalazine( Mes) as a positive drug. The pharmacodynamic effects of low( PT1) and high( PT2)doses of T. wilfordii processed with licorice were analyzed by disease activity index( DAI),colon length and colon histopathological score in mice. By detecting the expression levels of TNF-α and IL-6 cytokines in the serum of mice,immunohistochemical CD3+T and Fox P3+Treg staining in the colon of mice,the anti-inflammatory and immunoregulatory effects of T. wilfordii processed with licorice on UC mice were analyzed. The hepatotoxicity of each dose of T. wilfordii processed with licorice was also analyzed by HE staining in liver tissue of mice and ALT and AST levels in serum. The results showed that the colitis symptoms of the mice in the PT1 group and the PT2 group were alleviated,the inflammatory cell infiltration was reduced. And the expression of inflammatory factors was decreased,the difference was statistically significant compared with the model group( P<0. 05). The HE staining and ALT and AST levels in the high dose group and low dose group were not significantly different from those in the normal group. The results showed that T. wilfordii processed with licorice has the anti-inflammatory and immunomodulatory effects on UC mice,and the dose did not show significant hepatotoxicity.


Subject(s)
Animals , Anti-Inflammatory Agents , Pharmacology , Colitis, Ulcerative , Drug Therapy , Dextran Sulfate , Drugs, Chinese Herbal , Pharmacology , Glycyrrhiza , Chemistry , Mice , Plant Extracts , Pharmacology , Tripterygium , Chemistry
16.
Article in Chinese | WPRIM | ID: wpr-773698

ABSTRACT

To observe the effect of Tripterygium Glycosides Tablets on angiogenesis of rats with type Ⅱ collagen-induced arthritis( CIA) and on the tube formation of human umbilical vein endothelial cells( HUVEC) in vitro. The HUVEC were induced by 20 μg·L-1 vascular endothelial growth factor( VEGF) in vitro,and were treated with 0. 1,1,10 mg·L-1 Tripterygium Glycosides Tablets continuously for 7 hours. The numbers of branches of tube formation were measured. SD rats were immunized to establish CIA. CIA rats were treated with 9,18,36 mg·kg-1·d-1 Tripterygium Glycosides Tablets for 42 days. Histopathological examination( HE) was performed to observe the vascular morphology and vascular density in the synovial membrane of the inflamed joints. Immunohistochemistry and immunofluorescence were performed to observe the expression of platelets-endothelial cell adhesion molecule( CD31) and αsmooth muscle actin( αSMA) in synovial membrane. Immunohistochemistry and Western blot were performed to observe the expression of hypoxia-inducible factors 1α( HIF1α) and angiotensin 1( Ang1) in the synovial tissue. The results showed that the numbers of branches of tube formation of HUVEC induced by VEGF were improved,and declined significantly after treated by Tripterygium Glycosides Tablets. Compared with the normal group,the vascular density,CD31 positive expression,CD31 +/αSMA-immature and total vascular positive expression in the synovial membrane of the model group were significantly increased,and so as HIF1α and Ang1 in the synovium. Tripterygium Glycosides Tablets reduced the synovial vascular density and inhibited the positive expression of CD31,CD31+/αSMA-immature blood vessels and total vascular,but has no effect on CD31+/αSMA+mature blood vessels. Tripterygium Glycosides Tablets also inhibited the expression of HIF1α and Ang1 in synovial membrane of inflammatory joints. Our results demonstrated that Tripterygium Glycosides Tablets could inhibit the angiogenesis of synovial tissue in CIA rats and the tube formation of HUVEC,which is related to the down-regulation of HIF1α/Ang1 signal axis.


Subject(s)
Angiogenesis Inhibitors , Pharmacology , Angiotensin I , Metabolism , Animals , Arthritis, Experimental , Drug Therapy , Drugs, Chinese Herbal , Pharmacology , Glycosides , Pharmacology , Human Umbilical Vein Endothelial Cells , Humans , Hypoxia-Inducible Factor 1, alpha Subunit , Metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction , Synovial Membrane , Tablets , Tripterygium , Chemistry , Vascular Endothelial Growth Factor A
17.
Article in Chinese | WPRIM | ID: wpr-773696

ABSTRACT

The present study was aimed to explore the dose-toxicity-effect relationship of Tripterygium wilfordii Hook f( TW) processed by liquorice,to establish the safe and effective therapeutic window,and further to provide scientific reference for the clinical use of TW. The toxicity and anti-inflammatory effect of six doses of raw TW and TW processed by liquorice( 0. 78,1. 56,3. 12,6. 24,12. 48,15. 60 g·kg-1) in 1-fluoro-2,4-dinitrobenzene( DNFB)-induced allergic contact dermatitis( ACD) model were mainly examined by histopathology and serum biochemistry. The liver biochemical parameters including ALT and AST,related inflammatory factors including TNF-α and IL-2,together with liver index,kidney index and the other pharmacodynamic indicators,were examined and compared. The results showed that compared with the control group,the serum levels of TNF-α and IL-2 of the model group were significantly increased( P<0. 01),which proved that the ACD model was successful. The comprehensive analysis of liver biochemical indexes,serum inflammatory factors and the other indexes showed that the safe and effective therapeutic window of TW processed by liquorice was 3. 12-12. 48 g·kg-1. The results showed the therapeutic window of TW processed by liquorice was much broader than that of raw TW. And it could provide scientific reference for the clinical rational use of TW.


Subject(s)
Animals , Cytokines , Blood , Dermatitis, Allergic Contact , Drug Therapy , Drugs, Chinese Herbal , Pharmacology , Glycyrrhiza , Chemistry , Plant Extracts , Pharmacology , Tripterygium , Chemistry
18.
Article in Chinese | WPRIM | ID: wpr-773695

ABSTRACT

To investigate the pharmacodynamic effect and virulent effect of the main components of the toxic Chinese medicine Tripterygium wilfordii,such as triptolide,tripchlorolide,tripterine,demethylzeylasteral,wilfotrine and euonine,the admet SAR online assessment system was used to calculate the properties of the main components of T. wilfordii. The potential targets of the components were mined and collected through multiple databases,and the potential targets were enriched by the bioinformatics database DAVID.Cytoscape software was used to establish a " target-pathway" network and perform topology analysis on the network. The main chemical components of T. wilfordii were able to penetrate the blood-brain barrier and had intestinal permeability. A total of 65 targets were predicted,including pathways in cancer,hepatitis B,rheumatoid arthritis,and chagas disease( American trypanosomiasis),Toll-like receptor signaling pathway,apoptosis,colorectal cancer,NF-kappa B signaling pathway,etc. T. wilfordii mainly plays a role in the treatment of immune diseases and cancer by regulating inflammatory signaling pathways and cancer signaling pathways. Its action on apoptosis pathway and drug metabolism enzymes may be the mechanism of its toxicity.


Subject(s)
Computational Biology , Drugs, Chinese Herbal , Pharmacology , Humans , Inflammation , Signal Transduction , Tripterygium , Chemistry
19.
Article in Chinese | WPRIM | ID: wpr-773694

ABSTRACT

Tripterygium wilfordii multiglycoside( GTW),an extract derived from T. wilfordii,has been used for rheumatoid arthritis and other immune diseases in China. However its potential hepatotoxicity has not been investigated completely. Firstly,the content of triptolid( TP) in GTW was 0. 008% confirmed by a LC method. Then after oral administration of GTW( 100,150 mg·kg-1) and TP( 12 μg·kg-1) in female Wistar rats for 24 h,it was found that 150 mg·kg-1 GTW showed more serious acute liver injury than 12 μg·kg-1 TP,with the significantly increased lever of serum ALT,AST,TBA,TBi L,TG and bile duct hyperplasia even hepatocyte apoptosis. The expression of mRNA and proteins of liver bile acid transporters such as BSEP,MRP2,NTCP and OATP were down-regulated significantly by GTW to inhibit bile acid excretion and absorption,resulting in cholestatic liver injury. Moreover,GTW was considered to be involved in hepatic oxidative stress injury,although it down-regulated SOD1 and GPX-1 mRNA expression without significant difference in MDA and GSH levels. In vitro,we found that TP was the main toxic component in GTW,which could inhibit cell viability up to 80% in Hep G2 and LO2 cells at the dose of 0. 1 μmol·L-1. Next a LC-MS/MS method was used to detect the concentration of triptolid in plasma from rats,interestingly,we found that the content of TP in GTW was always higher than in the same amount of TP,suggesting the other components in GTW may affect the TP metabolism. Finally,we screened the substrate of p-glycoprotein( p-gp) in Caco-2 cells treated with components except TP extrated from GTW,finding that wilforgine,wilforine and wilfordine was the substrate of p-gp. Thus,we speculated that wilforgine,wilforine and wilfordine may competitively inhibit the excretion of TP to bile through p-gp,leading to the enhanced hepatotoxity caused by GTW than the same amount of TP.


Subject(s)
Animals , Caco-2 Cells , Chemical and Drug Induced Liver Injury , Pathology , Chromatography, Liquid , Diterpenes , Toxicity , Drugs, Chinese Herbal , Toxicity , Epoxy Compounds , Toxicity , Female , Glycosides , Toxicity , Humans , Liver , Phenanthrenes , Toxicity , Plant Extracts , Toxicity , Rats , Rats, Wistar , Tandem Mass Spectrometry , Tripterygium , Toxicity
20.
Article in Chinese | WPRIM | ID: wpr-773693

ABSTRACT

Tripterygium Glycosides Tablets has good anti-inflammatory and immunomodulatory activities,but its reproductive damage is significant. Previous studies of the research group have found that Cuscutae Semen flavonoids can improve spermatogenic cell damage caused by Tripterygium Glycosides Tablets by regulating spermatogenic cell cycle,apoptosis and related protein expression,but the mechanism of action at the gene level is still unclear. In this study,Illumina high-throughput sequencing platform was applied in transcriptional sequencing of spermatogenic cells of rats after the intervention of Cuscutae Semen flavonoids and Tripterygium Glycosides Tablets. Differentially expressed genes were screened out and the GO enrichment and KEGG pathway analysis of differentially expressed genes were conducted to explore the mechanism of Cuscutae Semen flavonoids in improving reproductive injury caused by Tripterygium Glycosides Tablets. The results showed that 794 up-regulated genes and 491 down-regulated genes were screened in Tripterygium Glycosides Tablets group compared with the blank group. Compared with Tripterygium Glycosides Tablets,440 up-regulated genes and 784 down-regulated genes were screened in the Cuscutae Semen flavonoids+Tripterygium Glycosides Tablets group. Among them,the gene closely related to reproductive function is DNMT3 L. Analysis of GO function and KEGG signaling pathway enrichment showed that the above differentially expressed genes were mainly enriched in cell,cell process,catalytic activity,binding,ovarian steroid synthesis,thyroid hormone and other functions and pathways. The thyroid hormone signaling pathway was the common enrichment pathway of the two control groups. In a word,Cuscutae Semen flavonoids has a good treatment effect on male reproductive damage caused by Tripterygium Glycosides Tablets. The mechanism may be closely related to up-regulation of DNMT3 L genes and intervention of thyroid hormone signaling pathway. At the same time,the discovery of many different genes provides valuable information for study on the mechanism of Cuscutae Semen flavonoids and Tripterygium Glycosides Tablets compatibility decreasing toxicity and increasing efficiency.


Subject(s)
Animals , Cuscuta , Chemistry , DNA (Cytosine-5-)-Methyltransferases , Genetics , Female , Flavonoids , Pharmacology , Genitalia , Pathology , Glycosides , Toxicity , High-Throughput Nucleotide Sequencing , Male , Rats , Seeds , Chemistry , Signal Transduction , Tablets , Thyroid Hormones , Genetics , Transcriptome , Tripterygium , Toxicity
SELECTION OF CITATIONS
SEARCH DETAIL