Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 978
Filter
1.
Biomedical and Environmental Sciences ; (12): 71-84, 2024.
Article in English | WPRIM | ID: wpr-1007909

ABSTRACT

OBJECTIVE@#To investigate the role and molecular mechanism of exosomal miR-224-5p in colorectal cancer (CRC).@*METHODS@#The miR-224-5p expression in CRC patient tissues and cell-derived exosomes was measured by laser capture microdissection and qRT-PCR, respectively. Dual-luciferase reporter gene assay was used to determine the target gene of miR-224-5p. The protein expressions of p53 and unc-51 like kinase 2 (ULK2) in CRC cells were detected by western blot. Flow cytometry was used to detect cell cycle and apoptosis. Cell proliferation was measured by CCK8 and EdU assay.@*RESULTS@#The miR-224-5p expression was upregulated in CRC tissues and increased progressively with the rise of CRC stage. CRC cells secreted extracellular miR-224-5p mainly in an exosome-dependent manner, and then miR-224-5p could be transferred to surrounding tumor cells to regulate cell proliferation in the form of autocrine or paracrine. Moreover, ULK2 was characterized as a direct target of miR-224-5p and was downregulated in CRC tissues. Interestingly, ULK2 inhibited CRC cell proliferation in a p53-dependent manner. Furthermore, exosome-derived miR-224-5p partially reversed the proliferation regulation of ULK2 on CRC cells.@*CONCLUSION@#Our findings demonstrate that exosome-transmitted miR-224-5p promotes p53-dependent cell proliferation by targeting ULK2 in CRC, which may offer promising targets for CRC prevention and therapy.


Subject(s)
Humans , MicroRNAs/metabolism , Tumor Suppressor Protein p53/metabolism , Exosomes/metabolism , Cell Proliferation/genetics , Colorectal Neoplasms/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
2.
Acta Academiae Medicinae Sinicae ; (6): 721-729, 2023.
Article in Chinese | WPRIM | ID: wpr-1008124

ABSTRACT

Objective To investigate the expression level of serine/threonine phosphoprotein phosphatase 4C(PPP4C)in gastric cancer,and analyze its relationship with prognosis and the underlying regulatory mechanism.Methods The clinical data of 104 gastric cancer patients admitted to the First Affiliated Hospital of Bengbu Medical College between January 2012 and August 2016 were collected.Immunohistochemical staining was employed to determine the expression levels of PPP4C and Ki-67 in the gastric cancer tissue.The gastric cancer cell lines BGC823 and HGC27 were cultured and transfected with the vector for PPP4C knockdown,the vector for PPP4C overexpression,and the lentiviral vector(control),respectively.The effects of PPP4C on the cell cycle and proliferation were analyzed and the possible regulatory mechanisms were explored.Results PPP4C was highly expressed in gastric cancer(P<0.001),and its expression promoted malignant progression of the tumor(all P<0.01).Univariate and Cox multivariate analysis clarified that high expression of PPP4C was an independent risk factor affecting the 5-year survival rate of gastric cancer patients(P=0.003).Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis suggested that PPP4C may be involved in the cell cycle.The correlation analysis showed that the expression of PPP4C was positively correlated with that of Ki-67 in gastric cancer(P<0.001).The up-regulation of PPP4C expression increased the proportion of tumor cells in the S phase,alleviated the G2/M phase arrest,and promoted the proliferation of gastric cancer cells and the expression of cyclin D1 and cyclin-dependent kinase 6(CDK6)(all P<0.05).The down-regulation of PPP4C decreased the proportion of gastric cancer cells in the S phase,promoted G2/M phase arrest,and inhibited cell proliferation and the expression of cyclin D1,CDK6,and p53(all P<0.05).p53 inhibitors promoted the proliferation of BGC823 and HGC27 cells in the PPP4C knockdown group(P<0.001,P<0.001),while p53 activators inhibited the proliferation of BGC823 and HGC27 cells in the PPP4C overexpression group(P<0.001,P=0.002).Conclusions PPP4C is highly expressed in gastric cancer and affects the prognosis of the patients.It may increase the proportion of gastric cancer cells in the S phase and alleviate the G2/M phase arrest by inhibiting p53 signaling,thereby promoting cell proliferation.


Subject(s)
Humans , Stomach Neoplasms/genetics , Cyclin D1/metabolism , Tumor Suppressor Protein p53 , Phosphoproteins/metabolism , Ki-67 Antigen , Cell Line, Tumor , Prognosis , Cell Proliferation , Phosphoprotein Phosphatases/metabolism , Threonine , Serine
3.
Acta Physiologica Sinica ; (6): 836-846, 2023.
Article in Chinese | WPRIM | ID: wpr-1007794

ABSTRACT

Aging is an independent risk factor for chronic diseases in the elderly, and understanding aging mechanisms is one of the keys to achieve early prevention and effective intervention for the diseases. Aging process is dynamic and systemic, making it difficult for mechanistic study. With recent advances in aging biomarkers and development of live-imaging technologies, more and more reporter mouse models have been generated, which can live monitor the aging process, and help investigate aging mechanisms at systemic level and develop intervention strategies. This review summarizes recent advances in live-imaging aging reporter mouse models based on widely used aging biomarkers (p16Ink4a, p21Waf1/Cip1, p53 and Glb1), and discusses their applications in aging research.


Subject(s)
Humans , Animals , Mice , Aged , Aging , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Biomarkers , Tumor Suppressor Protein p53
4.
China Journal of Chinese Materia Medica ; (24): 6115-6127, 2023.
Article in Chinese | WPRIM | ID: wpr-1008811

ABSTRACT

This study aimed to explore the mechanism of Zhongfeng Xingnao Decoction(ZFXN) in intervening microcirculatory di-sorders in cerebral hemorrhage by network pharmacology and molecular docking techniques. The information on the components of ZFXN was obtained through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) database, and the predicted targets of chemical components were obtained from PubChem and SwissTargetPrediction. The relevant targets of cerebral hemorrhage and microcirculatory disorders were collected from the GeneCards database, and the common targets of the components and diseases were analyzed by the Database for Annotation, Visualization, and Integrated Discovery(DAVID) for Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses. Visualization of the correlation network was carried out using Cytoscape software to further screen important chemical components for molecular docking prediction with disease targets. The animal experiment validation was performed using modified neurological severity score(mNSS), enzyme-linked immunosorbent assay(ELISA), quantitative real-time polymerase chain reaction(qRT-PCR), immunofluorescence, and Western blot to detect the effects of ZFXN intervention in mice with cerebral hemorrhage. The results showed that there were 31 chemical components and 856 targets in the four drugs contained in ZFXN, 173 targets for microcirculatory disorders in cerebral hemorrhage, and 57 common targets for diseases and components. The enrichment analysis showed that common targets were mainly involved in biological processes, such as cell proliferation and apoptosis, and signaling pathways, such as tumor pathway, viral infection, phosphoinositide-3-kinase/protein kinase B(PI3K/AKT) signaling pathway, and mitogen-activated protein kinase(MAPK) signaling pathway. Molecular docking results revealed that the common components β-sitosterol of Rhei Radix et Rhizoma, Notoginseng Radix et Rhizoma, and Ginseng Radix et Rhizoma Rubra showed good docking with proto-oncogene tyrosine-protein kinase(SRC), signal transducer and activator of transcription 3(STAT3), phosphoinositide-3-kinase catalytic alpha polypeptide gene(PIK3CA), recombinant protein tyrosine phosphatase non receptor type 11(PTPN11), AKT1, epidermal growth factor receptor(EGFR), calcium adhesion-associated protein beta 1(CTNNB1), vascular endothelial growth factor A(VEGFA), and tumor protein p53(TP53). Moreover, sennoside E of Rhei Radix et Rhizoma showed good docking with MAPK1. The results revealed that the ZFXN relieved the neural injury in mice with cerebral hemorrhage, decreased the expression of S100 calcium-binding protein B(S100β), neuron specific enolase(NSE), matrix metalloproteinase 9(MMP9), tumor necrosis factor α(TNF-α), interleukin 1β(IL-1β), SRC, EGFR, CTNNB1, VEGFA, TP53, glial fibrillary acidic protein(GFAP), and leukocyte differentiation antigen 86(CD86), and increased the expression of p-PI3K, p-AKT, and zona occludens 1(ZO-1). The results indicate that ZFXN may inhibit neuronal apoptosis and inflammatory response through PI3K/AKT/p53 pathway to protect the blood-brain barrier, thereby slowing down microcirculatory impairment in cerebral hemorrhage.


Subject(s)
Animals , Mice , Tumor Suppressor Protein p53 , Proto-Oncogene Proteins c-akt , Molecular Docking Simulation , Network Pharmacology , Vascular Endothelial Growth Factor A , Microcirculation , Phosphatidylinositol 3-Kinases/genetics , Tumor Necrosis Factor-alpha , ErbB Receptors , Cerebral Hemorrhage/drug therapy , Neoplasms , Phosphatidylinositols , Drugs, Chinese Herbal/pharmacology
5.
China Journal of Chinese Materia Medica ; (24): 5285-5293, 2023.
Article in Chinese | WPRIM | ID: wpr-1008726

ABSTRACT

This study aims to investigate the pathogenesis of chronic heart failure based on ferroptosis-mediated oxidative stress and predict the targets of Shenfu Injection in treating chronic heart failure. A rat model of chronic heart failure was established by the isoproterenol induction method. According to the random number table method, the modeled rats were assigned into three groups: a model group, a Shenfu Injection group, and a ferrostatin-1(ferroptosis inhibitor) group. In addition, a normal group was designed. After 15 days of intervention, the cardiac mass index and left ventricular mass index were determined. Echocardiography was employed to eva-luate the cardiac function. Hematoxylin-eosin staining and Masson staining were employed to reveal the pathological changes and fibrosis of the heart, and Prussian blue staining to detect the aggregation of iron ions in the myocardial tissue. Transmission electron microscopy was employed to observe the mitochondrion ultrastructure in the myocardial tissue. Colorimetry was adopted to measure the levels of iron metabolism, lipid peroxidation, and antioxidant indicators. Flow cytometry was employed to measure the content of lipid-reactive oxygen species(ROS) and the fluorescence intensity of ROS. Western blot and RT-qPCR were employed to determine the protein and mRNA levels, respectively, of ferroptosis-related factors in the myocardial tissue. The results showed that the rats in the model group had reduced cardiac function, elevated levels of total iron and Fe~(2+), lowered level of glutathione(GSH), increased malondialdehyde(MDA), decreased superoxide dismutase(SOD) and glutathione peroxidase(GSH-Px), and rising levels of ROS and lipid-ROS. In addition, the model group showed fibrous tissue hyperplasia with inflammatory cell infiltration and myocardial fibrosis, iron ion aggregation, and characteristic mitochondrial changes specific for iron death. Moreover, the model group showcased upregulated protein and mRNA levels of p53 and COX2 and downregulated protein and mRNA levels of GPX4, FTH1, SLC7A11, and Nrf2 in the myocardial tissue. The intervention with Shenfu Injection significantly improved the cardiac function, recovered the iron metabolism, lipid peroxidation, and antioxidant indicators, decreased iron deposition, improved mitochondrial structure and function, and alleviated inflammatory cell infiltration and fibrosis. Furthermore, Shenfu Injection downregulated the mRNA and protein levels of p53 and COX2 and upregulated the mRNA and protein levels of GPX4, FTH1, SLC7A11, and Nrf2 in the myocardial tissue. Shenfu Injection can improve the cardiac function by regulating iron metabolism, inhibiting ferroptosis, and reducing oxidative stress injury.


Subject(s)
Animals , Rats , Antioxidants , Reactive Oxygen Species , Cyclooxygenase 2 , Ferroptosis , NF-E2-Related Factor 2 , Tumor Suppressor Protein p53 , Heart Failure/genetics , Oxidative Stress , Chronic Disease , Glutathione , Fibrosis , Iron , RNA, Messenger , Lipids
6.
China Journal of Chinese Materia Medica ; (24): 5056-5067, 2023.
Article in Chinese | WPRIM | ID: wpr-1008676

ABSTRACT

This study aims to investigate the mechanism of Astragali Radix-Curcumae Rhizoma(HQEZ) in the treatment of gastric cancer based on network pharmacology. Further, the SGC7901 cell model of gastric cancer was employed to validate the efficacy and key targets of the herb pair. Firstly, the CCK-8 assay was employed to evaluate the direct effect of HQEZ on the proliferation of gastric cancer SGC7901 cells. Then, network pharmacology methods were employed to investigate the active ingredients, key targets, and key signaling pathways involved in the treatment of gastric cancer with HQEZ. The results showed that HQEZ contained 18 potential active ingredients, such as quercetin, naringenin, and curcumin. The results of gene ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment suggested that the main targets of HQEZ in treating gastric cancer were involved in the regulation of protein serine/threonine kinase activity, activation of mitogen-activated protein kinase(MAPK) activity, cysteine-type endopeptidase activity, and negative regulation of protein serine/threonine kinase activity. The hypoxia-inducible factor-1(HIF-1) signaling pathway, ATP-binding cassette(ABC) transporters, cytochrome P450-mediated metabolism of xenobiotics, p53 signaling pathway, and cell apoptosis were key signaling pathways of HQEZ in treating gastric cancer. The cell experiments demonstrated that HQEZ significantly downregulated the expression of ATP-binding cassette subfamily B member 1(ABCB1), epidermal growth factor receptor(EGFR), phosphorylated serine/threonine kinase(p-AKT), hypoxia inducible factor 1 subunit alpha(HIF1A), B-cell lymphoma 2(BCL2), breast cancer susceptibility protein 1(BRCA1), DNA polymerase theta(POLH), ribonucleotide reductase M1(RRM1), and excision repair cross-complementation group 1(ERCC1), and upregulated the expression of tumor protein P53(TP53) and cysteinyl aspartate-specific proteinase(CAPS3). Finally, a multivariate COX regression model was adopted to study the relationship between gene expression and clinical information data of gastric cancer patients in the TCGA database, which demonstrated that the key targets of HQEZ were associated with the poor prognosis in gastric cancer patients. Further feature selection using the LASSO algorithm showed that EGFR, HIF1A, TP53, POLH, RRM1, and ERCC1 were closely associated with the survival of gastric can-cer patients. In conclusion, HQEZ regulates the expression of genes involved in DNA repair, survival, and apoptosis in gastric cancer cells via multiple targets and pathways, assisting the treatment of gastric cancer.


Subject(s)
Humans , Stomach Neoplasms/genetics , Tumor Suppressor Protein p53 , Network Pharmacology , ErbB Receptors , Protein Serine-Threonine Kinases , Serine , Adenosine Triphosphate , Molecular Docking Simulation , Drugs, Chinese Herbal/pharmacology
7.
Journal of Southern Medical University ; (12): 1127-1135, 2023.
Article in Chinese | WPRIM | ID: wpr-987030

ABSTRACT

OBJECTIVE@#To investigate the effect of inhibitor of growth protein-2 (Ing2) silencing on angiotensin Ⅱ (AngⅡ)-induced cardiac remodeling in mice and explore the underlying mechanism.@*METHODS@#An adenoviral vector carrying Ing2 shRNA or empty adenoviral vector was injected into the tail vein of mice, followed 48 h later by infusion of 1000 ng · kg-1 · min-1 Ang Ⅱ or saline using a mini-osmotic pump for 42 consecutive days. Transthoracic echocardiography was used to assess cardiac geometry and function and the level of cardiac hypertrophy in the mice. Masson and WGA staining were used to detect myocardial fibrosis and cross-sectional area of cardiomyocytes, and myocardial cell apoptosis was detected with TUNEL assay. Western blotting was performed to detect myocardial expressions of cleaved caspase 3, ING2, collagen Ⅰ, Ac-p53(Lys382) and p-p53 (Ser15); Ing2 mRNA expression was detected using real-time PCR. Mitochondrial biogenesis, as measured by mitochondrial ROS content, ATP content, citrate synthase activity and calcium storage, was determined using commercial assay kits.@*RESULTS@#The expression levels of Ing2 mRNA and protein were significantly higher in the mice with chronic Ang Ⅱ infusion than in saline-infused mice. Chronic infusion of AngⅡ significantly increased the left ventricular end-systolic diameter (LVESD) and left ventricular end-diastolic diameter (LVEDD) and reduced left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) in the mice. Ing2 silencing obviously alleviated AngⅡ-induced cardiac function decline, as shown by decreased LVEDD and LVESD and increased LVEF and LVFS, improved myocardial mitochondrial damage and myocardial hypertrophy and fibrosis, and inhibited cardiomyocyte apoptosis. Chronic AngⅡ infusion significantly increased myocardial expression levels of Ac-p53(Lys382) and p-p53(Ser15) in the mice, and Ing2 silencing prior to AngⅡ infusion lessened AngⅡ- induced increase of Ac-p53(Lys382) without affecting p53 (ser15) expression.@*CONCLUSION@#Ing2 silencing can inhibit AngⅡ-induced cardiac remodeling and dysfunction in mice by reducing p53 acetylation.


Subject(s)
Animals , Mice , Angiotensin II , Tumor Suppressor Protein p53 , Acetylation , Stroke Volume , Ventricular Remodeling , Ventricular Function, Left , Myocytes, Cardiac
8.
Journal of Southern Medical University ; (12): 710-717, 2023.
Article in Chinese | WPRIM | ID: wpr-986980

ABSTRACT

OBJECTIVE@#To screen for small molecular compounds with selective inhibitory activity against cutaneous melanoma cells with BAP1 deletion.@*METHODS@#Cutaneous melanoma cells expressing wild-type BAP1 were selected to construct a BAP1 knockout cell model using CRISPR-Cas9 system, and small molecules with selective inhibitory activity against BAP1 knockout cells were screened from a compound library using MTT assay. Rescue experiment was carried out to determine whether the sensitivity of BAP1 knockout cells to the candidate compounds was directly related to BAP1 deletion. The effects of the candidate compounds on cell cycle and apoptosis were detected with flow cytometry, and the protein expressions in the cells were analyzed with Western blotting.@*RESULTS@#The p53 activator RITA from the compound library was shown to selectively inhibit the viability of BAP1 knockout cells. Overexpression of wild-type BAP1 reversed the sensitivity of BAP1 knockout cells to RITA, while overexpression of the mutant BAP1 (C91S) with inactivated ubiquitinase did not produce any rescue effect. Compared with the control cells expressing wild-type BAP1, BAP1 knockout cells were more sensitive to RITA-induced cell cycle arrest and apoptosis (P < 0.0001) and showed an increased expression of p53 protein, which was further increased by RITA treatment (P < 0.0001).@*CONCLUSION@#Loss of BAP1 results in the sensitivity of cutaneous melanoma cells to p53 activator RITA. In melanoma cells, the activity of ubiquitinase in BAP1 is directly related to their sensitivity to RITA. An increased expression of p53 protein induced by BAP1 knockout is probably a key reason for RITA sensitivity of melanoma cells, suggesting the potential of RITA as a targeted therapeutic agent for cutaneous melanoma carrying BAP1-inactivating mutations.


Subject(s)
Humans , Melanoma , Skin Neoplasms , Tumor Suppressor Protein p53 , Apoptosis , Cell Division , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics
9.
Chinese Journal of Lung Cancer ; (12): 78-82, 2023.
Article in Chinese | WPRIM | ID: wpr-971182

ABSTRACT

Lung squamous cell carcinoma (LSCC) accounts for approximately 30% of non-small cell lung cancer (NSCLC) cases and is the second most common histological type of lung cancer. Anaplastic lymphoma kinase (ALK)-positive NSCLC accounts for only 2%-5% of all NSCLC cases, and is almost exclusively detected in patients with lung adenocarcinoma. Thus, ALK testing is not routinely performed in the LSCC population, and the efficacy of such treatment for ALK-rearranged LSCC remains unknown. Echinoderm microtubule associated protein like 4 (EML4)-ALK (V1) and TP53 co-mutations were identified by next generation sequencing (NGS) in this patient with advanced LSCC. On December 3, 2020, Ensatinib was taken orally and the efficacy was evaluated as partial response (PR). The progression-free survival (PFS) was 19 months. When the disease progressed, the medication was changed to Loratinib. To our knowledge, Enshatinib created the longest PFS of ALK-mutant LSCC patients treated with targeted therapy since literature review. Herein, we described one case treated by Enshatinib involving a patient with both EML4-ALK and TP53 positive LSCC, and the relevant literatures were reviewed for discussing the treatment of this rare disease.
.


Subject(s)
Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/pathology , Anaplastic Lymphoma Kinase/metabolism , Carcinoma, Squamous Cell/genetics , Mutation , Cytoskeletal Proteins/genetics , Lung/pathology , Oncogene Proteins, Fusion/genetics , Protein Kinase Inhibitors/therapeutic use , Tumor Suppressor Protein p53/genetics
10.
China Journal of Chinese Materia Medica ; (24): 3014-3021, 2023.
Article in Chinese | WPRIM | ID: wpr-981431

ABSTRACT

Recent studies have shown that the occurrence and development of common liver diseases, including non-alcoholic fatty liver disease, cirrhosis, and liver cancer, are related to liver aging(LA). Therefore, to explore the effect and mechanism of Dahuang Zhechong Pills(DHZCP), a traditional classic prescription in improving LA with multiple targets, the present study randomly divided 24 rats into a normal group, a model group, a DHZCP group, and a vitamin E(VE) group, with six rats in each group. The LA model was induced by continuous intraperitoneal injection of D-galactose(D-gal) in rats. For the LA model rats, the general situation was evaluated by aging phenotype and body weight(BW). LA was assessed by the pathological characteristics of hepatocyte senescence, hepatic function indexes, the staining characteristics of phosphorylated histone family 2A variant(γ-H2AX), and the expression levels of cell cycle arrest proteins(P21, P53, P16) and senescence-associated secretory phenotype(SASP) in the liver. The activation of the reactive oxygen species(ROS)-mediated phosphatidylinositol-3 kinase(PI3K)/protein kinase B(Akt)/forkhead box protein O4(FoxO4) signaling pathway was estimated by hepatic ROS expression feature and the protein expression levels of the key signaling molecules in the PI3K/Akt/FoxO4 signaling pathway. The results showed that after the treatment with DHZCP or VE for 12 weeks, for the DHZCP and VE groups, the characterized aging phenotype, BW, pathological characteristics of hepatocyte senescence, hepatic function indexes, relative expression of ROS in the liver, protein expression levels of key signaling molecules including p-PI3K, p-Akt, and FoxO4 in the liver, staining characteristics of γ-H2AX, and the protein expression levels of P16, P21, P53, interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α) in the liver were improved, and the effects of DHZCP and VE were similar. Based on the D-gal-induced LA model in rats, this study demonstrates that DHZCP can ameliorate LA with multiple targets in vivo, and its effects and mechanism are related to regulating the activation of the ROS-mediated PI3K/Akt/FoxO4 signaling pathway in the liver. These findings are expected to provide new pharmacological evidence for the treatment of DHZCP in aging-related liver diseases.


Subject(s)
Animals , Rats , Proto-Oncogene Proteins c-akt/genetics , Phosphatidylinositol 3-Kinases/genetics , Reactive Oxygen Species , Tumor Suppressor Protein p53/genetics , Signal Transduction , Liver , Aging , Cell Cycle Proteins , Interleukin-6
11.
Acta Physiologica Sinica ; (6): 339-350, 2023.
Article in Chinese | WPRIM | ID: wpr-981010

ABSTRACT

This paper aimed to investigate the role and potential mechanism of p53 on primordial follicle activation. Firstly, the p53 mRNA expression in the ovary of neonatal mice at 3, 5, 7 and 9 days post-partum (dpp) and the subcellular localization of p53 were detected to confirm the expression pattern of p53. Secondly, 2 dpp and 3 dpp ovaries were cultured with p53 inhibitor Pifithrin-μ (PFT-μ, 5 μmol/L) or equal volume of dimethyl sulfoxide for 3 days. The function of p53 in primordial follicle activation was determined by hematoxylin staining and whole ovary follicle counting. The proliferation of cell was detected by immunohistochemistry. The relative mRNA levels and protein levels of the key molecules involved in the classical pathways associated with the growing follicles were examined by immunofluorescence staining, Western blot and real-time PCR, respectively. Finally, rapamycin (RAP) was used to intervene the mTOR signaling pathway, and ovaries were divided into four groups: Control, RAP (1 μmol/L), PFT-μ (5 μmol/L), PFT-μ (5 μmol/L) + RAP (1 μmol/L) groups. The number of follicles in each group was determined by hematoxylin staining and whole ovary follicle counting. The results showed that the expression of p53 mRNA was decreased with the activation of primordial follicles in physiological condition. p53 was expressed in granulosa cells and oocyte cytoplasm of the primordial follicles and growing follicles, and the expression of p53 in the primordial follicles was higher than that in the growing follicles. Inhibition of p53 promoted follicle activation and reduced the primordial follicle reserve. Inhibition of p53 promoted the proliferation of the granulosa cells and oocytes. The mRNA and protein expression levels of key molecules in the PI3K/AKT signaling pathway including AKT, PTEN, and FOXO3a were not significantly changed after PFT-μ treatment, while the expression of RPS6/p-RPS6, the downstream effectors of the mTOR signaling pathway, was upregulated. Inhibition of both p53 and mTOR blocked p53 inhibition-induced primordial follicle activation. Collectively, these findings suggest that p53 may inhibit primordial follicle activation through the mTOR signaling pathway to maintain the primordial follicle reserve.


Subject(s)
Female , Animals , Mice , Tumor Suppressor Protein p53/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Hematoxylin , Signal Transduction/physiology , TOR Serine-Threonine Kinases , Sirolimus , RNA, Messenger
12.
Chinese Acupuncture & Moxibustion ; (12): 454-460, 2023.
Article in Chinese | WPRIM | ID: wpr-980744

ABSTRACT

OBJECTIVE@#To explore the possible mechanism of acupuncture at "Zhibian" (BL 54) through "Shuidao" (ST 28) on premature ovarian insufficiency (POI) from the perspective of oxidative stress.@*METHODS@#Sixty female SD rats were randomly divided into a blank group, a model group, a sham acupuncture group, a medication group, and an acupuncture group, 12 rats in each group. Except the blank group, the rats in the remaining groups were intraperitoneally injected with cyclophosphamide to establish the POI model. After the model was successfully established, the rats in the acupuncture group were treated with acupuncture at "Zhibian" (BL 54) through "Shuidao" (ST 28), with a depth of about 12 mm, and the needle was retained for 30 min; the acupuncture was given once a day, for a total of 4 weeks. The rats in the sham acupuncture group were treated with blunt-head needle to tap the skin surface of "Zhibian" (BL 54), without penetrating the skin, once a day for 4 weeks. The rats in the medication group were treated with estradiol valerate by gastric gavage for 4 weeks. After the intervention, the level of reactive oxygen species (ROS) in the ovarian tissue was detected by fluorescence probe; the expression of c-Jun N-terminal kinase (JNK), forkhead box O1 (FoxO1), tumor suppressor gene protein 53 (p53) and p53 up-regulated modulator of apoptosis (Puma) mRNA and protein in ovarian tissue were detected by real-time fluorescence quantitative PCR and Western blot.@*RESULTS@#Compared with the blank group, the level of ROS and the expression of JNK mRNA, p-JNK protein, FoxO1, p53, Puma mRNA and protein in the ovarian tissue in the model group were increased (P<0.01). Compared with the model group, the level of ROS and the expression of p-JNK protein, FoxO1, p53, Puma mRNA and protein in the ovarian tissue in the sham acupuncture group were slightly reduced, but the difference was not statistically significant (P>0.05). The level of ROS and the expression of JNK mRNA, p-JNK protein, FoxO1, p53, Puma mRNA and protein in the ovarian tissue in the acupuncture group and the medication group were reduced (P<0.01).@*CONCLUSION@#Acupuncture at "Zhibian" (BL 54) through "Shuidao" (ST 28) could improve the level of oxidative stress, down-regulate the expression of apoptosis-related factors JNK, FoxO1, p53 and Puma induced by oxidative stress, and inhibit the premature failure of ovarian reserve function caused by apoptosis of ovarian granulosa cells in POI rats.


Subject(s)
Humans , Rats , Female , Animals , Rats, Sprague-Dawley , Reactive Oxygen Species , Tumor Suppressor Protein p53/genetics , Apoptosis Regulatory Proteins , Acupuncture Therapy , Primary Ovarian Insufficiency/therapy , Apoptosis , RNA, Messenger , Oxidative Stress , Acupuncture Points
13.
China Journal of Chinese Materia Medica ; (24): 3904-3912, 2023.
Article in Chinese | WPRIM | ID: wpr-981523

ABSTRACT

The effects of oenothein B(OEB) on the proliferation, apoptosis, invasion, and migration of breast cancer MCF-7 and MDA-MB-231 cells were investigated by cell culture in vitro, network pharmacology, and molecular docking. In vitro cell experiments revealed that OEB inhibited the proliferation and colony formation ability, and promoted the apoptosis and formation of apoptotic bodies in breast cancer cells, as well as inhibited the invasion and migration of breast cancer cells. The targets of OEB were obtained using SwissTargetPrediction database and breast cancer targets were obtained from GeneCards. The targets of OEB and breast cancer were entered separately in Venny 2.1 software to obtain the Venn diagram of common targets of OEB and breast cancer. The common targets of OEB and breast cancer were input into STRING database to construct a protein-protein interaction(PPI) network, which was entered into Cytoscape 3.7.2 software for network topology analysis. Key targets were screened according to protein association strength, and analyzed for KEGG pathway enrichment. Molecular docking of OEB to key targets using AutoDock software revealed that OEB stably bound to the active pocket of P53, while OEB promoted the expression of P53 protein. MCF-7 and MDA-MB-231 cell viability and migration ability increased after silencing P53, and this change was reversed after treatment with OEB. Therefore, this study showed that OEB inhibited the proliferation, migration, and invasion of breast cancer MCF-7 and MDA-MB-231 cells, and promoted the apoptosis of breast cancer MCF-7 and MDA-MB-231 cells, which may be related to the targeted regulation of P53.


Subject(s)
Humans , Female , Cell Proliferation , Breast Neoplasms/drug therapy , Tumor Suppressor Protein p53/genetics , Molecular Docking Simulation
14.
Acta Physiologica Sinica ; (6): 17-26, 2023.
Article in Chinese | WPRIM | ID: wpr-970102

ABSTRACT

Previous studies have shown that long-term spermatogonial stem cells (SSCs) have the potential to spontaneously transform into pluripotent stem cells, which is speculated to be related to the tumorigenesis of testicular germ cells, especially when p53 is deficient in SSCs which shows a significant increase in the spontaneous transformation efficiency. Energy metabolism has been proved to be strongly associated with the maintenance and acquisition of pluripotency. Recently, we compared the difference in chromatin accessibility and gene expression profiles between wild-type (p53+/+) and p53 deficient (p53-/-) mouse SSCs using the Assay for Targeting Accessible-Chromatin with high-throughput sequencing (ATAC-seq) and transcriptome sequencing (RNA-seq) techniques, and revealed that SMAD3 is a key transcription factor in the transformation of SSCs into pluripotent cells. In addition, we also observed significant changes in the expression levels of many genes related to energy metabolism after p53 deletion. To further reveal the role of p53 in the regulation of pluripotency and energy metabolism, this paper explored the effects and mechanism of p53 deletion on energy metabolism during the pluripotent transformation of SSCs. The results of ATAC-seq and RNA-seq from p53+/+ and p53-/- SSCs revealed that gene chromatin accessibility related to positive regulation of glycolysis and electron transfer and ATP synthesis was increased, and the transcription levels of genes encoding key glycolytic enzymes and regulating electron transport-related enzymes were markedly increased. Furthermore, transcription factors SMAD3 and SMAD4 promoted glycolysis and energy homeostasis by binding to the chromatin of the Prkag2 gene which encodes the AMPK subunit. These results suggest that p53 deficiency activates the key enzyme genes of glycolysis in SSCs and enhances the chromatin accessibility of genes associated with glycolysis activation to improve glycolysis activity and promote transformation to pluripotency. Moreover, SMAD3/SMAD4-mediated transcription of the Prkag2 gene ensures the energy demand of cells in the process of pluripotency transformation and maintains cell energy homeostasis by promoting AMPK activity. These results shed light on the importance of the crosstalk between energy metabolism and stem cell pluripotency transformation, which might be helpful for clinical research of gonadal tumors.


Subject(s)
Animals , Mice , Male , AMP-Activated Protein Kinases , Chromatin , Energy Metabolism , Gene Deletion , Stem Cells , Tumor Suppressor Protein p53/genetics , Spermatogonia/cytology
15.
China Journal of Chinese Materia Medica ; (24): 1032-1042, 2023.
Article in Chinese | WPRIM | ID: wpr-970575

ABSTRACT

Based on transcriptome sequencing technology, the mouse model of prediabetes treated with Huangjing Qianshi Decoction was sequenced to explore the possible mechanism of treating prediabetes. First of all, transcriptome sequencing was performed on the normal BKS-DB mouse group, the prediabetic model group, and the Huangjing Qianshi Decoction treatment group(treatment group) to obtain differentially expressed genes in the skeletal muscle samples of mice. The serum biochemical indexes were detected in each group to screen out the core genes of Huangjing Qianshi Decoction in prediabetes. Gene Ontology(GO) database and Kyoto Encyclopedia of Genes and Genomes(KEGG) database were used to conduct signaling pathway enrichment analysis of differentially expressed genes, and real-time quantitative polymerase chain reaction(RT-qPCR) was used to verify them. The results showed that the levels of fasting blood glucose(FBG), fasting insulin(FINS), insulin resistance index(HOMA-IR), total cholesterol(TC), triglycerides(TG), and low-density lipoprotein cholesterol(LDL-C) in the mouse model were significantly decreased after treatment with Huangjing Qianshi Decoction. In the results of differential gene screening, there were 1 666 differentially expressed genes in the model group as compared with the normal group, and there were 971 differentially expressed genes in the treatment group as compared with the model group. Among them, interleukin-6(IL-6) and NR3C2 genes, which were closely related to the regulation of insulin resis-tance function, were significantly up-regulated between the model group and the normal group, and vascular endothelial growth factor A(VEGFA) genes were significantly down-regulated between the model group and the normal group. However, the expression results of IL-6, NR3C2, and VEGFA genes were adverse between the treatment group and the model group. GO functional enrichment analysis found that the biological process annotation mainly focused on cell synthesis, cycle, and metabolism; cell component annotation mainly focused on organelles and internal components; and molecular function annotation mainly focused on binding molecular functions. KEGG pathway enrichment analysis found that it involved the protein tyrosine kinase 6(PTK6) pathway, CD28-dependent phosphoinositide 3-kinase/protein kinase B(PI3K/AKT) pathway, p53 pathway, etc. Therefore, Huangjing Qianshi Decoction can improve the state of prediabetes, and the mechanism may be related to cell cycle and apoptosis, PI3K/AKT pathway, p53 pathway, and other biological pathways regulated by IL-6, NR3C2, and VEGFA.


Subject(s)
Animals , Mice , Proto-Oncogene Proteins c-akt , Phosphatidylinositol 3-Kinases , Prediabetic State , Vascular Endothelial Growth Factor A , Interleukin-6 , Transcriptome , Tumor Suppressor Protein p53 , Insulin , Cholesterol
16.
Chinese Journal of Oncology ; (12): 499-507, 2023.
Article in Chinese | WPRIM | ID: wpr-984749

ABSTRACT

Objective: To clarify the mechanisms involvement in Alisertib-resistant colorectal cells and explore a potential target to overcome Alisertib-resistance. Methods: Drug-resistant colon cancer cell line (named as HCT-8-7T cells) was established and transplanted into immunodeficient mice. The metastasis in vivo were observed. Proliferation and migration of HCT-8-7T cells and their parental cells were assessed by colony formation and Transwell assay, respectively. Glycolytic capacity and glutamine metabolism of cells were analyzed by metabolism assays. The protein and mRNA levels of critical factors which are involved in mediating glycolysis and epithelial-mesenchymal transition (EMT) were examined by western blot and reverse transcription-quantitative real-time polymerase chain reaction(RT-qPCR), respectively. Results: In comparison with the mice transplanted with HCT-8 cells, which were survival with limited metastatic tumor cells in organs, aggressive metastases were observed in liver, lung, kidney and ovary of HCT-8-7T transplanted mice (P<0.05). The levels of ATP [(0.10±0.01) mmol/L], glycolysis [(81.77±8.21) mpH/min] and the capacity of glycolysis [(55.50±3.48) mpH/min] in HCT-8-7T cells were higher than those of HCT-8 cells [(0.04±0.01) mmol/L, (27.77±2.55) mpH/min and(14.00±1.19) mpH/min, respectively, P<0.05]. Meanwhile, the levels of p53 protein and mRNA in HCT-8-7T cells were potently decreased as compared to that in HCT-8 cells (P<0.05). However, the level of miRNA-125b (2.21±0.12) in HCT-8-7T cells was significantly elevated as compared to that in HCT-8 cells (1.00±0.00, P<0.001). In HCT-8-7T cells, forced-expression of p53 reduced the colon number (162.00±24.00) and the migration [(18.53±5.67)%] as compared with those in cells transfected with control vector [274.70±40.50 and (100.00±29.06)%, P<0.05, respectively]. Similarly, miR-125b mimic decreased the glycolysis [(25.28±9.51) mpH/min] in HCT-8-7T cells as compared with that [(54.38±12.70)mpH/min, P=0.003] in HCT-8-7T cells transfected with control. Meanwhile, in comparison with control transfected HCT-8-7T cells, miR-125b mimic also significantly led to an increase in the levels of p53 and β-catenin, in parallel with a decrease in the levels of PFK1 and HK1 in HCT-8-7T cells (P<0.05). Conclusions: Silencing of p53 by miR-125b could be one of the mechanisms that contributes to Alisertib resistance. Targeting miR-125b could be a strategy to overcome Alisertib resistance.


Subject(s)
Animals , Female , Mice , Humans , Azepines , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , RNA, Messenger , Tumor Suppressor Protein p53/genetics , Drug Resistance, Neoplasm
17.
Chinese journal of integrative medicine ; (12): 1099-1110, 2023.
Article in English | WPRIM | ID: wpr-1010309

ABSTRACT

OBJECTIVE@#To investigate the involvement of endothelial cells (ECs)-derived exosomes in the anti-apoptotic effect of Danhong Injection (DHI) and the mechanism of DHI-induced exosomal protection against postinfarction myocardial apoptosis.@*METHODS@#A mouse permanent myocardial infarction (MI) model was established, followed by a 14-day daily treatment with DHI, DHI plus GW4869 (an exosomal inhibitor), or saline. Phosphate-buffered saline (PBS)-induced ECs-derived exosomes were isolated, analyzed by miRNA microarray and validated by droplet digital polymerase chain reaction (ddPCR). The exosomes induced by DHI (DHI-exo), PBS (PBS-exo), or DHI+GW4869 (GW-exo) were isolated and injected into the peri-infarct zone following MI. The protective effects of DHI and DHI-exo on MI hearts were measured by echocardiography, Masson's trichrome staining, and TUNEL apoptosis assay. The Western blotting and quantitative reverse transcription PCR (qRT-PCR) were used to evaluate the expression levels of miR-125b/p53-mediated pathway components, including miR-125b, p53, Bak, Bax, and caspase-3 activities.@*RESULTS@#DHI significantly improved cardiac function and reduced infarct size in MI mice (P<0.01), which was abolished by the GW4869 intervention. DHI promoted the exosomal secretion in ECs (P<0.01). According to the results of exosomal miRNA microarray assay, 30 differentially expressed miRNAs in the DHI-exo were identified (28 up-regulated miRNAs and 2 down-regulated miRNAs). Among them, DHI significantly elevated miR-125b level in DHI-exo and DHI-treated ECs, a recognized apoptotic inhibitor impeding p53 signaling (P<0.05). Remarkably, treatment with DHI and DHI-exo attenuated apoptosis, elevated miR-125b expression level, inhibited capsase-3 activity, and down-regulated the expression levels of proapoptotic effectors (p53, Bak, and Bax) in post-MI hearts, whereas these effects were blocked by GW4869 (P<0.05 or P<0.01).@*CONCLUSION@#DHI and DHI-induced exosomes inhibited apoptosis, promoted the miR-125b expression level, and regulated the p53 apoptotic pathway in post-infarction myocardium.


Subject(s)
Mice , Animals , Tumor Suppressor Protein p53/metabolism , Endothelial Cells/metabolism , Exosomes/metabolism , bcl-2-Associated X Protein/metabolism , Myocardium/metabolism , Myocardial Infarction/drug therapy , Apoptosis , MicroRNAs/metabolism
18.
Chinese Journal of Lung Cancer ; (12): 721-731, 2023.
Article in Chinese | WPRIM | ID: wpr-1010080

ABSTRACT

BACKGROUND@#Lung adenocarcinoma (LUAD) is a major subtype of lung cancer, and its treatment and diagnosis remain a hot research topic. Targeting protein for Xenopus kinesin-like protein 2 (TPX2) is highly expressed in a variety of cancer cells and may be associated with the progression of LUAD. This study aimed to investigate the effect of TPX2 on the malignant progression of LUAD cells and the regulatory mechanisms.@*METHODS@#The expression of gene TPX2 in LUAD tissues from The Cancer Genome Atlas (TCGA) database was analyzed by bioinformatics analysis techniques. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression levels of TPX2 and miR-218-5p in human lung normal cell lines and human LUAD cell lines. Western blot was used to detect TPX2 protein expression in cell lines and its effect on the expression of key proteins in the p53 signaling pathway. The relationship between TPX2 and miR-218-5p was predicted using bioinformatics and verified by dual luciferase reporter gene assay. Cell counting kit-8 (CCK-8) assay, cell clone formation, cell scratching, Transwell assay, and flow cytometry were used to detect the effects of miR-218-5p and TPX2 on LUAD cell function.@*RESULTS@#TPX2 was significantly overexpressed in LUAD cells, and knockdown of TPX2 inhibited LUAD cell proliferation, migration, and invasion, promoted apoptosis and induced G2/M phase block, and promoted the expression of key proteins in the p53 signaling pathway. miR-218-5p, an upstream regulator of TPX2, could inhibit its expression. Overexpression of miR-218-5p eliminated the malignant development caused by high expression of TPX2, inhibited the malignant processes of LUAD cells such as proliferation and migration as well as promoted the p53 signaling pathway.@*CONCLUSIONS@#miR-218-5p targets and inhibits TPX2 expression and exerts an inhibitory effect on the malignant progression of LUAD cells via p53.


Subject(s)
Humans , Lung Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Adenocarcinoma of Lung/genetics , Adenocarcinoma/genetics , Cell Proliferation/genetics , MicroRNAs/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Microtubule-Associated Proteins/genetics , Cell Cycle Proteins/genetics
19.
Biomedical and Environmental Sciences ; (12): 657-662, 2022.
Article in English | WPRIM | ID: wpr-939606

ABSTRACT

This study aimed to investigate the neurotoxicity induced by trichloroacetic acid (TCA) and the possible protective mechanisms of boron (B). Mouse BV2 cells were treated with TCA (0, 0.39, 0.78, 1.56, 3.12, 6.25, or 12.5 mmol/L) and B (0, 7.8, 15.6, 31.25, 62.5, 125, 500, or 1,000 mmol/L) for 3 h and 24 h, respectively. Then, reactive oxygen species, and supernatant proinflammatory cytokine and protein levels were analyzed after 24 h of combined exposure. Beyond the dose-dependent decrease in the cellular viability, it clearly increased after B supplementation ( P < 0.05). Moreover, B decreased oxidative damage, and significantly down-regulated IL-6 levels and up-regulated TNF-β production ( P < 0.05). B also decreased apoptosis via the p53 pathway. The present findings indicated that TCA may induce oxidative damage, whereas B mitigates these adverse effects by decreasing cell apoptosis.


Subject(s)
Animals , Mice , Apoptosis , Boron/toxicity , Oxidative Stress , Reactive Oxygen Species/metabolism , Trichloroacetic Acid/toxicity , Tumor Suppressor Protein p53/metabolism
20.
Journal of Zhejiang University. Science. B ; (12): 204-217, 2022.
Article in English | WPRIM | ID: wpr-929052

ABSTRACT

It has been revealed that hypoxia is dynamic in hypertrophic scars; therefore, we considered that it may have different effects on hypoxia-inducible factor-1α (HIF-1α) and p53 expression. Herein, we aimed to confirm the presence of a teeterboard-like conversion between HIF-1α and p53, which is correlated with scar formation and regression. Thus, we obtained samples of normal skin and hypertrophic scars to identify the differences in HIF-1α and autophagy using immunohistochemistry and transmission electron microscopy. In addition, we used moderate hypoxia in vitro to simulate the proliferative scar, and silenced HIF-1α or p53 gene expression or triggered overexpression to investigate the changes of HIF-1α and p53 expression, autophagy, apoptosis, and cell proliferation under this condition. HIF-1α, p53, and autophagy-related proteins were assayed using western blotting and immunofluorescence, whereas apoptosis was detected using flow cytometry analysis, and cell proliferation was detected using cell counting kit-8 (CCK-8) and 5-bromo-2'-deoxyuridine (BrdU) staining. Furthermore, immunoprecipitation was performed to verify the binding of HIF-1α and p53 to transcription cofactor p300. Our results demonstrated that, in scar tissue, HIF-1α expression increased in parallel with autophagosome formation. Under hypoxia, HIF-1α expression and autophagy were upregulated, whereas p53 expression and apoptosis were downregulated in vitro. HIF-1α knockdown downregulated autophagy, proliferation, and p300-bound HIF-1α, and upregulated p53 expression, apoptosis, and p300-bound p53. Meanwhile, p53 knockdown induced the opposite effects and enhanced HIF-1α, whereas p53 overexpression resulted in the same effects and reduced HIF-1α. Our results suggest a teeterboard-like conversion between HIF-1α and p53, which is linked with scar hyperplasia and regression.


Subject(s)
Humans , Apoptosis , Autophagy , Cell Hypoxia , Fibroblasts/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL