ABSTRACT
Objective: To investigate the clinicopathological characteristics, diagnosis and differential diagnosis of intravascular large B-cell lymphoma (IVLBCL) and its collision tumors. Methods: Five cases of IVLBCL were collected, including 2 cases of collision tumors, and 1 case complicated with liver cirrhosis. The morphology and immunophenotype were analyzed. The related literature was reviewed. Results: There were 2 females and 3 males, aged from 53 to 73 years, with a median age of 65 years. The tumors were located in the lower extremities, right cerebellar hemisphere, left kidney, bilateral nasal cavity, and liver, respectively. Cases 2 and 3 were incidentally found in meningioma and renal cell carcinoma tissues, respectively. Case 5 had a background of liver cirrhosis. Morphologically, atypical large lymphoid cells were located in small blood vessels and capillary lumen, with little cytoplasm, hyperchromasia, prominent nucleoli, and obvious mitotic figures. Immunohistochemically, the IVLBCL tumor cells expressed CD20 and PAX5; 2 cases were CD5 positive. One of the 5 cases was GCB phenotype, and 4 cases were non-GCB phenotype. All cases expressed C-MYC (positive rate was 10%-40%). PD-L1 was positive in 4 cases (positive rate was 60%-90%). Ki-67 proliferation index was 70%-90%. CKpan, CD3, TDT, and CD34 were negative. In case 2, meningioma cells were positive for PR, EMA, and vimentin, but negative for CKpan and PD-L1. In case 3, renal carcinoma cells were positive for CKpan, PAX8, EMA, vimentin, CAⅨ and CD10, while PD-L1 was negative. No EBER expression (by in situ hybridization) or C-MYC gene translocation (FISH, break-apart probe) was detected in any of the 5 cases. Three patients were followed up, and all died within 1-13 months. Conclusions: IVLBCL is a highly aggressive lymphoma, with occult clinical manifestations and poor prognosis. Collision tumors of IVLBCL are extremely rare. A better understanding of IVLBCL would help pathologists avoid misdiagnoses.
Subject(s)
Male , Female , Humans , Aged , B7-H1 Antigen , Vimentin , Meningioma , Lymphoma, Large B-Cell, Diffuse/pathology , Carcinoma, Renal Cell , Kidney Neoplasms/pathology , Meningeal Neoplasms , Liver CirrhosisABSTRACT
As lesões odontogênicas epiteliais benignas constituem um grupo heterogêneo de lesões. A proteína CLIC4 atua na regulação dos processos de parada de crescimento e apoptose, participando também do processo de transdiferenciação dos fibroblastos em miofibroblastos que passam a expressar α-SMA. Além disso, a expressão de CLIC4 pode interferir no processo de transição epitélio-mesenquima (TEM) em neoplasias. Este trabalho avaliou a imunoexpressão de CLIC4, α-SMA, E-caderina e Vimentina em ameloblastomas (AM) (n = 16), ceratocistos odontogênicos (n = 20) e tumores odontogênicos adenomatóides (TOA) (n = 8). A análise da expressão imunoistoquímica das proteínas CLIC4, E-caderina e vimentina no componente epitelial das lesões e de CLIC4 e α-SMA no tecido conjuntivo foi realizada de forma semi-quantitativa por um avaliador previamente calibrado. A expressão no componente epitelial de CLIC4 foi analisada separadamente no núcleo e no citoplasma, bem como a marcação de E-caderina que foi avaliada na membrana e no citoplasma. As comparações dos percentuais de imunorreatividade em relação aos grupos estudados foram realizadas por meio dos testes não paramétricos de Kruskal-Wallis e Mann-Whitney. Possíveis correlações entre a expressão de CLIC4, α-SMA, E-caderina e Vimentina foram avaliadas por meio do teste de correlação de Spearman. O nível de significância foi estabelecido em 5% (p < 0,05). Foram observados diferentes padrões de marcação entre os grupos analisados, observando-se que a imunoexpressão exclusivamente citoplasmática da CLIC4 no componente epitelial dos AM (p < 0,001) e TOA (p < 0,001) foi significativamente superior a dos CO, não demonstrarando significância estatística entre os AM e TOA. A imunoexpressão (nuclear e citoplasmática) da CLIC4 no revestimento epitelial CO foi significativamente superior à encontrada no componente epitelial dos AM (p < 0,001) e dos TOA (p < 0,001). A imunoexpressão estromal de CLIC4 foi significativamente superior nos AM (p = 0,009) e CO (p = 0,004) quando comparados aos TOA. A imunoexpressao de α-SMA significativamente maior em AM (p = 0,016) e CO (p = 0,034) quando comparados aos TOA. Para a imunoexpressão membranar da E-caderina em CO foi significativamente superior em comparação à encontrada nos AM (p = 0,009) e nos TOA (p = 0,024). Foi observada maior imunoexpressão de E-caderina (membranar e citoplasmática) nos COs, quando comparados aos AM (p < 0,001) e aos TOAs (p < 0,001). A expressão de Ecaderina citoplasmática foi significativamente maior nos AM e TOA (p < 0,001) quando comparados aos CO. Observou-se diferença estatisticamente significativa na imunoexpressão de vimentina entre os casos de AM e os casos de TOA (p = 0,038) e CO (p < 0,001), bem como entre o TOA e CO (p < 0,001). As correlações testadas entre os escores das proteínas estudadas evidenciou que no grupo dos AM foi possível evidenciar moderada correlação positiva e estatisticamente significativa (r = 0,527; p = 0,036) entre a expressão citoplasmática da CLIC4 e a expressão citoplasmática da E-caderina. Também foi verificada fraca correlação negativa e estatisticamente significativa (r = -0,499; p = 0,049) entre a expressão núcleo-citoplasmática da CLIC4 e a expressão citoplasmática da E-caderina nos AM. Além disso, uma moderada correlação positiva e estatisticamente significativa entre a expressão estromal da CLIC4 e a expressão da α-SMA nos AM (r = 0,648; p = 0,007) e nos CO (r = 0,541; p = 0,014). Foi observada forte correlação negativa e estatisticamente significativa (r = -0,813; p < 0,001) entre a expressão da E-caderina e a expressão da vimentina nos AM. Os resultados deste estudo sugerem um potencial envolvimento de CLIC4 no processo de transdiferenciação de miofibroblastos, e que a presença destas células é mais frequentemente associada a lesões de comportamento biológico mais agressivo como os AM e CO, além de uma possível atuação desta proteína na regulação do ciclo celular e na TEM nas lesões estudadas (AU).
Benign epithelial odontogenic lesions constitute a heterogeneous group of lesions. the CLIC4 protein acts in the regulation of growth arrest and apoptosis processes, also participating in the process of transdifferentiation of fibroblasts Into myofibroblasts that begin to express α-SMA. Furthermore, CLIC4 expression can interfere with the epithelialmesenchymal transition (EMT) process in neoplasms. This work evaluated the immunoexpression of CLIC4, α-SMA, e-cadherin and vimentin in ameloblastomas (AM) (n = 16), odontogenic keratocysts (OK) (n = 20) and adenomatoid odontogenic tumors (AOT) (n = 8). The analysis of the immunohistochemical expression of the proteins CLIC4, ecadherin and vimentin in the epithelial component of the lesions and of CLIC4 and α-SMA in the connective tissue was carried out in a semi-quantitative way by a previously calibrated evaluator. Expression in the epithelial component of CLIC4 was analyzed separately in the nucleus and cytoplasm, as well as e-cadherin labeling, which was evaluated in the membrane and cytoplasm. Comparisons of the percentages of immunoreactivity in relation to the studied groups were carried out using the nonparametric kruskal-wallis and mann-whitney tests. Possible correlations between the expression of CLIC4, α-SMA, e-cadherin and vimentin were evaluated using the spearman correlation test. The significance level was set at 5% (p < 0.05). Different staining patterns were observed between the groups analyzed, observing that the exclusively cytoplasmic immunoexpression of CLIC4 in the epithelial component of AM (p < 0.001) and AOT (p < 0.001) was significantly higher than that of OK, not demonstrating statistical significance between the AM and AOT. The immunoexpression (nuclear and cytoplasmic) of CLIC4 in the co epithelial lining was significantly higher than that found in the epithelial component of AM (p < 0.001) and AOT (p < 0.001). Stromal CLIC4 immunoexpression was significantly higher in AM (p = 0.009) and OK (p = 0.004) when compared to AOT. The immunoexpression of α-SMA is significantly higher in AM (p = 0.016) and OK (p = 0.034) when compared to AOT. For e-cadherin membrane immunoexpression in co was significantly higher compared to that found in AM (p = 0.009) and AOT (p = 0.024). Greater immunoexpression of e-cadherin (membrane and cytoplasmic) was observed in OK, when compared to AM (p < 0.001) and AOT (p < 0.001). Cytoplasmic ecadherin expression was significantly higher in AM and AOT (p < 0.001) when compared to OK. A statistically significant difference in vimentin immunoexpression was observed between cases of AM and cases of AOT (p = 0.038) and OK (p < 0.001), as well as between AOT and OK (p < 0.001). The correlations tested between the scores of the proteins studied showed that in the am group it was possible to demonstrate a moderate positive and statistically significant correlation (r = 0.527; p = 0.036) between the cytoplasmic expression of clic4 and the cytoplasmic expression of e-cadherin. A weak and statistically significant negative correlation (r = -0.499; p = 0.049) was also found between the nucleus-cytoplasmic expression of clic4 and the cytoplasmic expression of e- cadherin in AM. Furthermore, a moderate positive and statistically significant correlation between the stromal expression of CLIC4 and the expression of α-SMA in AM (r = 0.648; p = 0.007) and OK (r = 0.541; p = 0.014). Additionally, a strong negative and statistically significant correlation (r = -0.813; p < 0.001) was observed between the expression of ecadherin and the expression of vimentin in AM. The results of this study suggest a potential involvement of CLIC4 in the myofibroblast transdifferentiation process, and that the presence of these cells is more frequently associated with lesions with more aggressive biological behavior such as AM and OK, in addition to a possible role of this protein in the regulation of cell cycle and EMT in the lesions studied (AU).
Subject(s)
Ameloblastoma/pathology , Odontogenic Cysts/pathology , Cadherins/metabolism , Epithelium/injuries , Vimentin/metabolism , Cross-Sectional Studies/methods , Retrospective Studies , Statistics, Nonparametric , Myofibroblasts/pathology , Epithelial-Mesenchymal TransitionABSTRACT
This study aims to investigate the effect of Astragali Radix-Curcumae Rhizoma(AC) combination on the proliferation, migration, and invasion of colon cancer HT-29 cells based on epithelial-mesenchymal transition(EMT). HT-29 cells were respectively treated with 0, 3, 6 and 12 g·kg~(-1) AC-containing serum for 48 h. The survival and growth of cells were measured by thiazole blue(MTT) colorimetry, and the proliferation, migration, and invasion of cells were detected by 5-ethynyl-2'-deoxyuridine(EdU) test and Transwell assay. Cell apoptosis was examined by flow cytometry. The BALB/c nude mouse model of subcutaneous colon cancer xenograft was established, and then model mice were classified into blank control group, 6 g·kg~(-1) AC group, and 12 g·kg~(-1) AC group. The tumor weight and volume of mice were recorded, and the histopathological morphology of the tumor was observed based on hematoxylin-eosin(HE) staining. The expression of apoptosis-associated proteins B-cell lymphoma-2-associated X protein(Bax), cysteine-aspartic acid protease-3(caspase-3), and cleaved caspase-3, and EMT-associated proteins E-cadherin, MMP9, MMP2 and vimentin in HT-29 cells and mouse tumor tissues after the treatment of AC was determined by Western blot. The results showed that cell survival rate and the number of cells at proliferation stage decreased compared with those in the blank control group. The number of migrating and invading cells reduced and the number of apoptotic cells increased in the administration groups compared with those in the blank control group. As for the in vivo experiment, compared with the blank control group, the administration groups had small tumors with low mass and shrinkage of cells and karyopycnosis in the tumor tissue, indicating that the AC combination may improve EMT. In addition, the expression of Bcl2 and E-cadherin increased and the expression of Bax, caspase-3, cleaved caspase-3, MMP9, MMP2, and vimentin decreased in HT-29 cells and tumor tissues in each administration group. In summary, the AC combination can significantly inhibit the proliferation, invasion, migration, and EMT of HT-29 cells in vivo and in vitro and promote the apoptosis of colon cancer cells.
Subject(s)
Humans , Animals , Mice , Caspase 3 , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Vimentin , HT29 Cells , bcl-2-Associated X Protein , Colonic Neoplasms , Cell ProliferationABSTRACT
Objective: To investigate the effects of regenerating islet-derived protein 3A (REG3A) on the proliferation and invasion of glioma cells and its molecular mechanism. Methods: Five low-grade, five high-grade glioma tissues and ten adjacent tissues from glioma patients who underwent surgery at Linyi People's Hospital from October 17, 2017 to October 18, 2018 were collected. Human glioma cell lines (SF295, U251, TG905, A172, CRT) and a primary glioma cell line PT-1 were cultured in vitro. The protein and mRNA expressions of REG3A in these tissues and glioma cell lines were detected by Western blot and reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). SF295 cells were infected with lentivirus and labeled as REG3A plasmid transfection group, and the TG905 cells were transfected with si-REG3A by liposome transfection reagent and labeled as si-REG3A transfection group. At the same time, the empty transfection control and blank control groups were set up. Glioma cells were treated with REG3A recombinant protein alone or in combination with Akt1/2 inhibitors. Cell counting kit-8 (CCK-8) and cell scratch assay were used to detect cell proliferation and invasion, respectively. Western blot was used to detect the protein expression of N-cadherin, vimentin and phosphorylation of Akt (p-Akt) in REG3A overexpressed and knockdown glioma cells. Results: RT-qPCR results showed that the mRNA expression levels of REG3A in glioma cells in each group were U251 (2.129±0.13), TG905 (2.22±0.59), CRT (5.02±0.31), A172 (6.62±1.34) and PT-1 (9.18±0.61), respectively, higher than its expression in SF295 cells (1.00±0.18, P<0.001). The mRNA expression level of REG3A in high-grade glioma tissue samples (3.18±2.92) was higher than that in the control group (1.00±1.14, P=0.031) and low-grade glioma group (0.90±0.67, P=0.014). The results of western blot and immunohistochemical staining were consistent with that of RT-qPCR. The migration rate of cells in si-REG3A transfection group [(60.57±5.30)%] was lower than that of the empty transfection group [(84.18±13.63)% (P=0.038)] and blank control group [(79.65±12.09)% (P=0.076)]. The results of the scratch experiment showed that the migration rate of cells in REG3A plasmid transfected cells in the SF295 group was (96.05±6.41)%, which was significantly higher than that of empty transfected cells [(74.47±8.23)%, P=0.021)]. REG3A recombinant protein could up-regulate the expression of N-cadherin, vimentin and p-Akt in SF295 cells. Compared with the control group [(100.00±2.53)%], the proliferation rate in the REG3A recombinant protein group [(117.70±10.24)%] was significantly up-regulated, and the proliferation rate in the REG3A recombinant protein+ Akt inhibitor group [(98.31±3.64)%] was significantly lower than that of the REG3A recombinant protein group (P=0.017). The migration rate of the REG3A recombinant protein+ Akt inhibitor group was (63.35±4.06)%, which was significantly lower than (89.26±11.07)% of the REG3A recombinant protein group (P=0.019). Conclusion: REG3A can promote the proliferation and invasion of human glioma cells by activating the PI3K/Akt signaling pathway.
Subject(s)
Humans , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Glioma/genetics , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/metabolism , Signal Transduction , Vimentin/metabolismABSTRACT
Objective: To investigate the effects of regenerating islet-derived protein 3A (REG3A) on the proliferation and invasion of glioma cells and its molecular mechanism. Methods: Five low-grade, five high-grade glioma tissues and ten adjacent tissues from glioma patients who underwent surgery at Linyi People's Hospital from October 17, 2017 to October 18, 2018 were collected. Human glioma cell lines (SF295, U251, TG905, A172, CRT) and a primary glioma cell line PT-1 were cultured in vitro. The protein and mRNA expressions of REG3A in these tissues and glioma cell lines were detected by Western blot and reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). SF295 cells were infected with lentivirus and labeled as REG3A plasmid transfection group, and the TG905 cells were transfected with si-REG3A by liposome transfection reagent and labeled as si-REG3A transfection group. At the same time, the empty transfection control and blank control groups were set up. Glioma cells were treated with REG3A recombinant protein alone or in combination with Akt1/2 inhibitors. Cell counting kit-8 (CCK-8) and cell scratch assay were used to detect cell proliferation and invasion, respectively. Western blot was used to detect the protein expression of N-cadherin, vimentin and phosphorylation of Akt (p-Akt) in REG3A overexpressed and knockdown glioma cells. Results: RT-qPCR results showed that the mRNA expression levels of REG3A in glioma cells in each group were U251 (2.129±0.13), TG905 (2.22±0.59), CRT (5.02±0.31), A172 (6.62±1.34) and PT-1 (9.18±0.61), respectively, higher than its expression in SF295 cells (1.00±0.18, P<0.001). The mRNA expression level of REG3A in high-grade glioma tissue samples (3.18±2.92) was higher than that in the control group (1.00±1.14, P=0.031) and low-grade glioma group (0.90±0.67, P=0.014). The results of western blot and immunohistochemical staining were consistent with that of RT-qPCR. The migration rate of cells in si-REG3A transfection group [(60.57±5.30)%] was lower than that of the empty transfection group [(84.18±13.63)% (P=0.038)] and blank control group [(79.65±12.09)% (P=0.076)]. The results of the scratch experiment showed that the migration rate of cells in REG3A plasmid transfected cells in the SF295 group was (96.05±6.41)%, which was significantly higher than that of empty transfected cells [(74.47±8.23)%, P=0.021)]. REG3A recombinant protein could up-regulate the expression of N-cadherin, vimentin and p-Akt in SF295 cells. Compared with the control group [(100.00±2.53)%], the proliferation rate in the REG3A recombinant protein group [(117.70±10.24)%] was significantly up-regulated, and the proliferation rate in the REG3A recombinant protein+ Akt inhibitor group [(98.31±3.64)%] was significantly lower than that of the REG3A recombinant protein group (P=0.017). The migration rate of the REG3A recombinant protein+ Akt inhibitor group was (63.35±4.06)%, which was significantly lower than (89.26±11.07)% of the REG3A recombinant protein group (P=0.019). Conclusion: REG3A can promote the proliferation and invasion of human glioma cells by activating the PI3K/Akt signaling pathway.
Subject(s)
Humans , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Glioma/genetics , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/metabolism , Signal Transduction , Vimentin/metabolismABSTRACT
This study aimed to explore the effect and mechanism of acetylalkannin from Arnebia euchroma on the proliferation, migration, and invasion of human melanoma A375 cells. A375 cells were divided into a blank group, and low-, medium-, and high-dose acetylalkannin groups(0.5, 1.0, and 2.0 μmol·L~(-1)). The MTT assay was used to detect cell proliferation. Cell scratch and transwell migration assays were used to detect cell migration ability, and the transwell invasion assay was used to detect cell invasion ability. Western blot was used to detect the protein expression of migration and invasion-related N-cadherin, vimentin, matrix metalloproteina-se-9(MMP-9), and Wnt/β-catenin pathway-related Wnt1, Axin2, glycogen synthase kinase-3β(GSK-3β), phosphorylated GSK-3β(p-GSK-3β), β-catenin, cell cycle protein D_1(cyclin D_1), and p21. Real-time fluorescence-based quantitative polymerase chain reaction(real-time PCR) was used to detect the mRNA expression of E-cadherin, matrix metalloproteinase-2(MMP-2), N-cadherin, vimentin, β-catenin, snail-1, and CD44. MTT results showed that the cell inhibition rates in the acetylalkannin groups significantly increased as compared with that in the blank group(P<0.01). The results of cell scratch and transwell assays showed that compared with the blank group, the acetylalkannin groups showed reduced cell migration and invasion, and migration and invasion rates(P<0.05, P<0.01) and weakened horizontal and vertical migration and invasion abilities. Western blot results showed that compared with the blank group, the high-dose acetylalkannin group showed increased expression of Axin2 protein(P<0.05), and decreased expression of N-cadherin, vimentin, MMP-9, Wnt1, p-GSK-3β, β-catenin, cyclin D_1, and p21 proteins(P<0.05, P<0.01). The expression of GSK-3β protein did not change significantly. PCR results showed that the overall trend of MMP-2, N-cadherin, vimentin, β-catenin, snail-1, and CD44 mRNA expression was down-regulated(P<0.01), and the expression of E-cadherin mRNA increased(P<0.01). Acetylalkannin can inhibit the proliferation, migration, and invasion of human melanoma A375 cells, and its mechanism of action may be related to the regulation of Wnt/β-catenin signaling pathway.
Subject(s)
Humans , Matrix Metalloproteinase 2/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , beta Catenin/metabolism , Vimentin/metabolism , Matrix Metalloproteinase 9/metabolism , Cell Line, Tumor , Wnt Signaling Pathway , Cadherins/genetics , Melanoma/genetics , Cyclin D/metabolism , Cell Proliferation , Boraginaceae/genetics , RNA, Messenger , Cell MovementABSTRACT
Objective:To explore the expression and importance of Piezo1, E-cadherin, and Vimentin in nasal polyps patients. Methods:Thirty-five patients undergoing endoscopic sinus surgery under general anesthesia were streamed into 20 cases of nasal polyps(NP group) and 15 cases of simple septoplasty without any sinus disease(Control group). Immunofluorescence staining and Western Blot were applied to detect the protein level of Piezo1, E-cadherin, and Vimentin in NP tissues and nasal polyp-derived primary human nasal epithelial cells(pHNECs). Also, BEAS-2B cell lines were treated with human TGF-β1 protein to establish epithelial mesenchymal transition(EMT) model in vitro and quantitative real-time polymerase chain reaction were used to calculate Piezo1 and above biomarkers in the model. Results:Compared with control group, Piezo1 and Vimentin showed higher level while E-cadherin was lower in NP tissues and pHNECs.In EMT model in vitro, Piezo1 and Vimentin were demonstrated higher expression with decreased level of E-cadherin. Conclusion:The tendency of Piezo1 is consistent with the mesenchymal-related biomarker Vimentin, going against with epithelial-related biomarker E-cadherin, implying its involvement with EMT process in nasal polyps.
Subject(s)
Humans , Biomarkers/metabolism , Cadherins/metabolism , Chronic Disease , Epithelial-Mesenchymal Transition , Nasal Polyps/metabolism , Rhinosinusitis , Sinusitis , Transforming Growth Factor beta1/metabolism , Vimentin/metabolismABSTRACT
Objective: To investigate the effects of human umbilical cord mesenchymal stem cells (hUCMSCs) combined with autologous Meek microskin transplantation on patients with extensive burns. Methods: The prospective self-controlled study was conducted. From May 2019 to June 2022, 16 patients with extensive burns admitted to the 990th Hospital of PLA Joint Logistics Support Force met the inclusion criteria, while 3 patients were excluded according to the exclusion criteria, and 13 patients were finally selected, including 10 males and 3 females, aged 24-61 (42±13) years. A total of 20 trial areas (40 wounds, with area of 10 cm×10 cm in each wound) were selected. Two adjacent wounds in each trial area were divided into hUCMSC+gel group applied with hyaluronic acid gel containing hUCMSCs and gel only group applied with hyaluronic acid gel only according to the random number table, with 20 wounds in each group. Afterwards the wounds in two groups were transplanted with autologous Meek microskin grafts with an extension ratio of 1∶6. In 2, 3, and 4 weeks post operation, the wound healing was observed, the wound healing rate was calculated, and the wound healing time was recorded. The specimen of wound secretion was collected for microorganism culture if there was purulent secretion on the wound post operation. In 3, 6, and 12 months post operation, the scar hyperplasia in wound was assessed using the Vancouver scar scale (VSS). In 3 months post operation, the wound tissue was collected for hematoxylin-eosin (HE) staining to observe the morphological changes and for immunohistochemical staining to observe the positive expressions of Ki67 and vimentin and to count the number of positive cells. Data were statistically analyzed with paired samples t test and Bonferronni correction. Results: In 2, 3, and 4 weeks post operation, the wound healing rates in hUCMSC+gel group were (80±11)%, (84±12)%, and (92±9)%, respectively, which were significantly higher than (67±18)%, (74±21)%, and (84±16)% in gel only group (with t values of 4.01, 3.52, and 3.66, respectively, P<0.05). The wound healing time in hUCMSC+gel group was (31±11) d, which was significantly shorter than (36±13) d in gel only group (t=-3.68, P<0.05). The microbiological culture of the postoperative wound secretion specimens from the adjacent wounds in 2 groups was identical, with negative results in 4 trial areas and positive results in 16 trial areas. In 3, 6, and 12 months post operation, the VSS scores of wounds in gel only group were 7.8±1.9, 6.7±2.1, and 5.4±1.6, which were significantly higher than 6.8±1.8, 5.6±1.6, and 4.0±1.4 in hUCMSC+gel group, respectively (with t values of -4.79, -4.37, and -5.47, respectively, P<0.05). In 3 months post operation, HE staining showed an increase in epidermal layer thickness and epidermal crest in wound in hUCMSC+gel group compared with those in gel only group, and immunohistochemical staining showed a significant increase in the number of Ki67 positive cells in wound in hUCMSC+gel group compared with those in gel only group (t=4.39, P<0.05), with no statistically significant difference in the number of vimentin positive cells in wound between the 2 groups (P>0.05). Conclusions: The application of hyaluronic acid gel containing hUCMSCs to the wound is simple to perform and is therefore a preferable route. Topical application of hUCMSCs can promote healing of the autologous Meek microskin grafted area in patients with extensive burns, shorten wound healing time, and alleviate scar hyperplasia. The above effects may be related to the increased epidermal thickness and epidermal crest, and active cell proliferation.
Subject(s)
Female , Humans , Male , Young Adult , Adult , Middle Aged , Burns/surgery , Cicatrix , Eosine Yellowish-(YS) , Hyaluronic Acid/therapeutic use , Hyperplasia , Ki-67 Antigen , Prospective Studies , Umbilical Cord , VimentinABSTRACT
OBJECTIVES@#Cervical squamous cell carcinoma is the most common cancer in female reproductive system. This study aims to explore the effect of microRNA-9-5p (miR-9-5p) on the migration, invasion, and epithelial-mesenchymal transition (EMT) process of cervical squamous cells.@*METHODS@#Bioinformatics were used to predict the miRNAs that could bind to E-cadherin (E-cad). The Cancer Genome Atlas (TCGA) database was used to analyze and extract significantly differentially expressed miRNAs from part of cervical squamous cell carcinoma tissues and normal cervical tissues, and miR-9-5p was selected as the main research target. The translated regions (UTR) of wild-type E-cad (E-cad-WT 3'-UTR) or the 3'-UTR of mutant E-cad (E-Cad-MUT 3'-UTR) was transfected with miR-9-5p mimic normal control (NC), and miR-9-5p mimic was co-transfected human embryonic kidney cells (293T). The relationship between miR-9-5p and E-cad was detected by double luciferase assay. The expression of miR-9-5p in normal cervical epithelial cell lines (H8) and cervical squamous cell lines (C33A, siha, caski and Me180) were detected by quantitative real-time PCR. Then, the experiments were divided into groups as follows: a block control group, an overexpression control group (mimic-NC group), a miR-95p overexpression group (mimic group), an inhibitory expression control group (inhibitor-NC group), and a miR-9-5p inhibitory expression group (inhibitor group). The changes of migration ability were detected by scratch assay. Transwell invasion assay was used to analyze the changes of invasion ability, and the mRNA and protein changes of E-cad and vimentin were detected by quantitative real-time PCR and Western blotting.@*RESULTS@#MiR-9-5p had a targeting binding relationship with E-cad. Compared with the normal cervical tissue H8 cell line, the miR-9-5p was highly expressed in cervical cancer cell lines (C33A, siha, caski and Me180) (all P<0.05). The luciferase activity of E-cad-MUT was increased compared with that of E-cad-WT in miR-9-5p mimic cells (P<0.05). Compared with the blank control group, the protein and mRNA expressions of E-cad were decreased in the miR-9-5p mimic group (both P<0.05), which were increased in the miR-9-5p inhibitor group (both P<0.05). Compared with H8 cell line, the miR-9-5p was highly expressed in the cervical squamous cell lines (all P<0.05). Compared with the mimic-NC group, the distance of wound healing, the number of caski and Me180 cells invaded below the membrane, and the mRNA and protein expressions of vimentin were all increased in the miR-9-5p mimic group (all P<0.05), while the mRNA and protein of E-cad were decreased (both P<0.05). Compared with the inhibitor-NC group, the distance of wound healing, the number of caski and Me180 cells invading the membrane, and the mRNA and protein expressions of vimentin were decreased in the miR-9-5p inhibitor group (all P<0.05), but the mRNA and protein expressions of E-cad were increased (both P<0.05).@*CONCLUSIONS@#The miR-9-5p is highly expressed in cervical squamous cell carcinoma, which can increase the migration and invasion ability, and promote the EMT process of cancer cells.
Subject(s)
Humans , Female , Cell Line, Tumor , Vimentin/metabolism , Uterine Cervical Neoplasms/genetics , Epithelial-Mesenchymal Transition/genetics , MicroRNAs/metabolism , Carcinoma, Squamous Cell/genetics , Cell Movement/genetics , RNA, Messenger , Cell Proliferation/genetics , Gene Expression Regulation, NeoplasticABSTRACT
Objective: To investigate the effect of acetyl-CoA carboxylase 1 (ACC1) knockdown on the migration of esophageal squamous cell carcinoma (ESCC) KYSE-450 cell and underlying mechanism. Methods: Lentiviral transfection was conducted to establish sh-NC control cell and ACC1 knocking down cell (sh-ACC1). Human siRNA HSP27 and control were transfected by Lipo2000 to get si-HSP27 and si-NC. The selective acetyltransferase P300/CBP inhibitor C646 was used to inhibit histone acetylation and DMSO was used as vehicle control. Transwell assay was performed to detect cell migration. The expression of HSP27 mRNA was examined by reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) and the expressions of ACC1, H3K9ac, HSP27 and epithelial-mesenchymal transition-related proteins E-cadherin and Vimentin were detected by western blot. Results: The expression level of ACC1 in sh-NC group was higher than that in sh-ACC1 group (P<0.01). The number of cell migration in sh-NC group was (159.00±24.38), lower than (361.80±26.81) in sh-ACC1 group (P<0.01). The protein expression levels of E-cadherin and Vimentin in sh-NC group were statistically significant compared with sh-AAC1 group (P<0.05). The migrated cell number in sh-NC+ si-NC group was (189.20±16.02), lower than (371.60±38.40) in sh-ACC1+ si-NC group (P<0.01). The migrated cell number in sh-NC+ si-NC group was higher than that in sh-NC+ si-HSP27 group (152.40±24.30, P<0.01), and the migrated cell number in sh-ACC1+ si-NC group was higher than that in sh-ACC1+ si-HSP27 group (P<0.01). The protein expression levels of E-cadherin and Vimentin in sh-NC+ si-NC group were significantly different from those in sh-ACC1+ si-NC and sh-NC+ si-HSP27 groups (P<0.01). The protein expression levels of E-cadherin and Vimentin in sh-ACC1+ si-NC group were significantly different from those in sh-ACC1+ si-HSP27 group (P<0.01). After 24 h treatment with C646 at 20 μmmo/L, the migrated cell number in sh-NC+ DMSO group was (190.80±11.95), lower than (395.80±17.10) in sh-ACC1+ DMSO group (P<0.01). The migrated cell number in sh-NC+ DMSO group was lower than that in sh-NC+ C646 group (256.20±23.32, P<0.01). The migrated cell number in sh-ACC1+ DMSO group was higher than that in sh-ACC1+ C646 group (87.80±11.23, P<0.01). The protein expressions of H3K9ac, HSP27, E-cadherin and Vimentin in sh-NC+ DMSO group were significantly different from those in sh-ACC1+ DMSO group and sh-NC+ C646 group (P<0.01). The protein expression levels of H3K9ac, HSP27, E-cadherin and Vimentin in sh-ACC1+ DMSO group were significantly different from those in sh-ACC1+ C646 group (P<0.01). Conclusion: Knockdown of ACC1 promotes the migration of KYSE-450 cell by up-regulating HSP27 and increasing histone acetylation.
Subject(s)
Humans , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/genetics , Vimentin/metabolism , Dimethyl Sulfoxide , HSP27 Heat-Shock Proteins/metabolism , Histones/metabolism , Cadherins/metabolism , Cell Movement , Cell Line, Tumor , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, NeoplasticABSTRACT
BACKGROUND@#Long non-coding RNA colon cancer-associated transcript 1 (CCAT1) is involved in transforming multiple cancers into malignant cancer types. Previous studies underlining the mechanisms of the functions of CCAT1 primarily focused on its decoy for miRNAs (micro RNAs). However, the regulatory mechanism of CCAT1-protein interaction associated with tumor metastasis is still largely unknown. The present study aimed to identify proteome-wide CCAT1 partners and explored the CCAT1-protein interaction mediated tumor metastasis.@*METHODS@#CCAT1-proteins complexes were purified and identified using RNA antisense purification coupled with the mass spectrometry (RAP-MS) method. The database for annotation, visualization, and integrated discovery and database for eukaryotic RNA binding proteins (EuRBPDB) websites were used to bioinformatic analyzing CCAT1 binding proteins. RNA pull-down and RNA immunoprecipitation were used to validate CCAT1-Vimentin interaction. Transwell assay was used to evaluate the migration and invasion abilities of HeLa cells.@*RESULTS@#RAP-MS method worked well by culturing cells with nucleoside analog 4-thiouridine, and cross-linking was performed using 365 nm wavelength ultraviolet. There were 631 proteins identified, out of which about 60% were RNA binding proteins recorded by the EuRBPDB database. Vimentin was one of the CCAT1 binding proteins and participated in the tumor metastasis pathway. Knocked down vimetin ( VIM ) and rescued the downregulation by overexpressing CCAT1 demonstrated that CCAT1 could enhance tumor migration and invasion abilities by stabilizing Vimentin protein.@*CONCLUSION@#CCAT1 may bind with and stabilize Vimentin protein, thus enhancing cancer cell migration and invasion abilities.
Subject(s)
Humans , HeLa Cells , RNA, Long Noncoding/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Vimentin/metabolism , MicroRNAs/metabolism , Colonic Neoplasms/genetics , RNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic/genetics , Cell Movement/geneticsABSTRACT
We investigated the effects of decursin on the proliferation, apoptosis, and migration of colorectal cancer HT29 and HCT116 cells through the phosphatidylinositol 3-kinase(PI3K)/serine-threonine kinase(Akt) pathway. Decursin(10, 30, 60, and 90 μmol·L~(-1)) was used to treat HT29 and HCT116 cells. The survival, colony formation ability, proliferation, apoptosis, wound hea-ling area, and migration of the HT29 and HCT116 cells exposed to decursin were examined by cell counting kit-8(CCK8), cloning formation experiments, Ki67 immunofluorescence staining, flow cytometry, wound healing assay, and Transwell assay, respectively. Western blot was employed to determine the expression levels of epithelial cadherin(E-cadherin), neural cadherin(N-cadherin), vimentin, B-cell lymphoma/leukemia-2(Bcl-2), Bcl-2-associated X protein(Bax), tumor suppressor protein p53, PI3K, and Akt. Compared with the control group, decursin significantly inhibited the proliferation and colony number and promoted the apoptosis of HT29 and HCT116 cells, and it significantly down-regulated the expression of Bcl-2 and up-regulated the expression of Bax. Decursin inhibited the wound healing and migration of the cells, significantly down-regulated the expression of N-cadherin and vimentin, and up-regulated the expression of E-cadherin. In addition, it significantly down-regulated the expression of PI3K and Akt and up-regulated that of p53. In summary, decursin may regulate epithelial-mesenchymal transition(EMT) via the PI3K/Akt signaling pathway, thereby affecting the proliferation, apoptosis, and migration of colorectal cancer cells.
Subject(s)
Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , bcl-2-Associated X Protein , Vimentin/metabolism , Cell Proliferation , Signal Transduction , Apoptosis , Cell Line, Tumor , Colorectal Neoplasms/genetics , Cadherins/genetics , Cell MovementABSTRACT
Central granular cell odontogenic tumors (CGCOTs) are rare, benign, slowly growing odontogenic neoplasms. Due to their uncertain histogenesis, CGCOTs are still not included as a distinct entity in the WHO classification (2017) of odontogenic tumors. We report a case of CGCOT involving the right side of maxillary anterior region of a 39-year-old white female. Immunohistochemical staining showed that granular cells positively expressed CD68 and vimentin, and negatively expressed S-100 protein. Meanwhile, we searched PubMed, Google Scholar, and Scopus databases to summary the clinico-pathological features of 51 reported cases of CGCOT. The results showed that the granular cells of 28.6% cases were immunopositive for vimentin and CD68, and odontogenic epithelial cells were positive immunoreactivity for cytokeratin. These findings reinforced the mesenchymal origin of granular cells and the odontogenic nature of epithelium islands.
Subject(s)
Humans , Female , Adult , Vimentin , Odontogenic Tumors/pathology , Epithelial Cells/pathology , KeratinsABSTRACT
Objective To investigate the effects of microRNA497 (miR-497) on the metastasis of gastric cancer and its possible molecular mechanism. Methods SGC-7901 gastric cancer parent cells were cultured in an ultra-low adhesion environment, and the anoikis resistance model of SGC-7901 cells was created after re-adhesion. Clone formation assay, flow cytometry, TranswellTM test and scratch healing test were used to detect the differences of biological behavior compared with their parent cells. Fluorescence quantitative PCR was performed to detect the expression of miR-497. Western blot analysis was used to detect the changes of key proteins of Wnt/β-catenin signaling pathway and epithelial mesenchymal transformation (EMT) related proteins such as vimentin and E-cadherin. Parent cells and anoikis resistant SGC-7901 cells were transfected with miR-497 inhibitor or miR-497 mimic, and CCK-8 assay was used to detect the proliferation activity. TranswellTM invasion assay was performed to detect the invasion ability of cells. TranswellTM migration test and scratch healing assay was used to determine the migration ability. Western blot analysis was used to detect the expressions of Wnt1, β-catenin, vimentin and E-cadherin. By transfecting miR-497 mimic into the anoikis resistance SGC-7901 cells and inoculating them subcutaneously in nude mice, the changes in the volume and mass of tumor tissues were measured and recorded. Western blot analysis was used to determine the expressions of Wnt1, β-catenin, vimentin and E-cadherin of tumor tissues. Results Compared with the parent cells, the anoikis resistance SGC-7901 gastric cancer cells had faster proliferation rate, stronger colony formation, lower apoptosis rate, stronger invasion and migration ability. The expression of miR-497 was significantly decreased. After down-regulation of miR-497, the proliferation ability, invasion and migration ability were significantly enhanced. The expressions of Wnt1, β-catenin and vimentin increased significantly, while E-cadherin decreased notably. The results of up-regulation miR-497 were the opposite. The tumor growth rate, tumor volume and mass of miR-497 overexpression group were significantly lower than those of control group. The expressions of Wnt1, β-catenin and vimentin decreased significantly, while the expression of E-cadherin increased significantly. Conclusion The expression of miR-497 is low in the anoikis resistance SGC-7901 cells. miR-497 can inhibit the growth and metastasis of gastric cancer cells by blocking Wnt/β-catenin signaling pathway and EMT.
Subject(s)
Animals , Mice , Humans , beta Catenin/metabolism , MicroRNAs/metabolism , Vimentin/metabolism , Stomach Neoplasms/pathology , Anoikis/genetics , Wnt Signaling Pathway/genetics , Mice, Nude , Cell Proliferation/genetics , Cadherins/genetics , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Cell Movement/geneticsABSTRACT
This study aims to investigate the intervention effect of the aqueous extract of Epimedium sagittatum Maxim on the mouse model of bleomycin(BLM)-induced pulmonary fibrosis, so as to provide data support for the clinical treatment of pulmonary fibrosis. Ninety male C57BL/6N mice were randomized into normal(n=10), model(BLM, n=20), pirfenidone(PFD, 270 mg·kg~(-1), n=15), and low-, medium-, and high-dose E. sagittatum extract(1.67 g·kg~(-1), n=15; 3.33 g·kg~(-1), n=15; 6.67 g·kg~(-1), n=15) groups. The model of pulmonary fibrosis was established by intratracheal instillation of BLM(5 mg·kg~(-1)) in the other five groups except the normal group, which was treated with an equal amount of normal saline. On the day following the modeling, each group was treated with the corresponding drug by gavage for 21 days. During this period, the survival rate of the mice was counted. After gavage, the lung index was calculated, and the morphology and collagen deposition of the lung tissue were observed by hematoxylin-eosin(HE) and Masson staining, respectively. The levels of reactive oxygen species(ROS) in lung cell suspensions were measured by flow cytometry. The levels of glutathione peroxidase(GSH-Px), total superoxide dismutase(T-SOD), and malondialdehyde(MDA) the in lung tissue were measured. Terminal-deoxynucleoitidyl transferase-mediated nick-end labeling(TUNEL) was employed to examine the apoptosis of lung tissue cells. The content of interleukin-6(IL-6), chemokine C-C motif ligand 2(CCL-2), matrix metalloproteinase-8(MMP-8), transforming growth factor-beta 1(TGF-β1), alpha-smooth muscle actin(α-SMA), E-cadherin, collagen Ⅰ, and fibronectin in the lung tissue was measured by enzyme-linked immunosorbent assay(ELISA). The expression levels of F4/80, Ly-6G, TGF-β1, and collagen Ⅰ in the lung tissue were determined by immunohistochemistry. The mRNA levels of CCL-2, IL-6, and MMP-7 in the lung tissue were determined by qRT-PCR. The content of hydroxyproline(HYP) in the lung tissue was determined by alkaline hydrolysation. The expression of α-SMA and E-cadherin was detected by immunofluorescence, and the protein levels of α-SMA, vimentin, E-cadherin in the lung tissue were determined by Western blot. The results showed the aqueous extract of E. sagittatum increased the survival rate, decreased the lung index, alleviated the pathological injury, collagen deposition, and oxidative stress in the lung tissue, and reduced the apoptotic cells. Furthermore, the aqueous extract of E. sagittatum down-regulated the protein levels of F4/80 and Ly-6G and the mRNA levels of CCL-2, IL-6, and MMP-7 in the lung tissue, reduced the content of IL-6, CCL-2, and MMP-8 in the alveolar lavage fluid. In addition, it lowered the levels of HYP, TGF-β1, α-SMA, collagen Ⅰ, fibronectin, and vimentin, and elevated the levels of E-cadherin in the lung tissue. The aqueous extract of E. sagittatum can inhibit collagen deposition, alleviate oxidative stress, and reduce inflammatory response by regulating the expression of the molecules associated with epithelial-mesenchymal transition, thus alleviating the symptoms of bleomycin-induced pulmonary fibrosis in mice.
Subject(s)
Mice , Male , Animals , Pulmonary Fibrosis/metabolism , Transforming Growth Factor beta1/metabolism , Epimedium/metabolism , Fibronectins/metabolism , Matrix Metalloproteinase 7/therapeutic use , Matrix Metalloproteinase 8/therapeutic use , Vimentin/metabolism , Interleukin-6/metabolism , Mice, Inbred C57BL , Lung , Collagen/metabolism , Bleomycin/toxicity , RNA, Messenger/metabolism , Cadherins/metabolismABSTRACT
This study explored the effect and mechanism of Maiwei Yangfei Decoction(MWYF) on pulmonary fibrosis(PF) mice. MWYF was prepared, and its main components were detected by ultra-high-performance liquid chromatography-triple quadrupole tandem mass spectrometry(UPLC-MS/MS). Male C57BL/6J mice were randomly divided into a control group, a model group, a pirfenidone(PFD) group, and low-, medium-, and high-dose MWYF groups, with 10 mice in each group. The PF model was induced in mice except for those in the control group by intratracheal instillation of bleomycin(BLM), and model mice were treated with saline or MWYF or PFD by gavage the next day. The water consumption, food intake, hair, and activity of mice were observed daily. The pathological changes in lung tissues were observed by hematoxylin-eosin(HE) staining, Masson staining, and CT scanning. The level of hydroxyproline(HYP) in lung tissues was detected by alkaline hydrolysis. Immunohistochemistry was used to observe the expression of collagen type Ⅲ(COL3) and fibronectin. The mRNA expression levels of α-smooth muscle actin(α-SMA), type Ⅰ collagen α1(COL1α1), COL3, and vimentin were detected by reverse transcription real-time fluorescence quantitative polymerase chain reaction(RT-qPCR). Superoxide dismutase(SOD) and malondialdehyde(MDA) kits were used to detect oxidative stress indicators in lung tissues and serum. The nuclear translocation of nuclear factor E2-related factor 2(Nrf2) protein was detected by immunofluorescence. The protein and mRNA expression levels of Nrf2, catalase(CAT), and heme oxygenase 1(HO-1) in lung tissues were detected by Western blot and RT-qPCR. Twelve chemical components were detected by UPLC-MS/MS. Animal experiments showed that MWYF could improve alveolar inflammation, collagen deposition, and fibrosis in PF mice, increase body weight of mice, and down-regulate the expression of fibrosis indexes such as HYP, α-SMA, COL1α1, COL3, fibronectin, and vimentin in lung tissues. In addition, MWYF could potentiate the activity of SOD in lung tissues and serum of PF mice, up-regulate the expression level of Nrf2, and promote its transfer to the nucleus, up-regulate the levels of downstream antioxidant target genes CAT and HO-1, and then reduce the accumulation of lipid metabolite MDA. In summary, MWYF can significantly improve the pathological damage and fibrosis of lung tissues in PF mice, and its mechanism may be related to the activation of the Nrf2 pathway to regulate oxidative stress.
Subject(s)
Mice , Male , Animals , Pulmonary Fibrosis/chemically induced , NF-E2-Related Factor 2/metabolism , Fibronectins/metabolism , Vimentin/metabolism , Chromatography, Liquid , Mice, Inbred C57BL , Tandem Mass Spectrometry , Oxidative Stress , Superoxide Dismutase/metabolism , RNA, Messenger/metabolismABSTRACT
Cisplatin, the first platinum compound approved for cancer treatment, is widely used in the treatment of various cancers including hepatocellular carcinoma (HCC). HCC incidence rates rise globally. Epithelial mesenchymal transition (EMT) is implicated in cancer invasion and metastasis, which are associated with increased mortality. Cisplatin dose might influence cancer invasion and metastatic behavior of the cells. The aim of the study was to investigate the effect of low-dose cisplatin treatment on EMT- related changes in HepG2 cells. Following treatment with 4 µM cisplatin, HepG2 cells were evaluated morphologically. Gene expression of E-cadherin, Vimentin, Snail1 was assessed by quantitative PCR. Immunofluorescence analyses of NA-K ATPase were performed. Although the low-dose cisplatin treated cells exhibited a more stretched morphology, no statistical difference was detected in gene expression of E-cadherin, Vimentin, Snail1 and immunofluorescence of NA-K ATPase. Findings on low-dose cisplatin effects in HepG2 might contribute to the knowledge of antineoplastic inefficacy by further understanding the molecular mechanisms of drug action.
El cisplatino, el primer compuesto de platino aprobado para el tratamiento del cáncer, es ampliamente utilizado en el tratamiento de varios tipos de cáncer, incluido el carcinoma hepatocelular (CHC). Las tasas de incidencia de CHC aumentan a nivel mundial. La transición mesenquimal epitelial (EMT) está implicada en la invasión del cáncer y la metástasis, que se asocian con un aumento de la mortalidad. La dosis de cisplatino podría influir en la invasión del cáncer y el comportamiento metastásico de las células. El objetivo del estudio fue investigar el efecto del tratamiento con dosis bajas de cisplatino en los cambios relacionados con la EMT en las células HepG2. Tras el tratamiento con cisplatino de 4 µM, se evaluaron morfológicamente las células HepG2. La expresión génica de E-cadherina, vimentina, caracol1 se evaluó mediante PCR cuantitativa. Se realizaron análisis de inmunofluorescencia de NA-K ATPasa . Aunque las células tratadas con cisplatino en dosis bajas exhibieron una morfología más estirada, no se detectaron diferencias estadísticas en la expresión génica de E-cadherina, vimentina, Snail1 e inmunofluorescencia de NA-K ATPasa. Los hallazgos sobre los efectos del cisplatino en dosis bajas en HepG2 podrían contribuir al conocimiento de la ineficacia antineoplásica al comprender mejor los mecanismos moleculares de la acción del fármaco.
Subject(s)
Humans , Cisplatin/administration & dosage , Antineoplastic Agents/administration & dosage , Vimentin/drug effects , Vimentin/genetics , Vimentin/metabolism , Cadherins/drug effects , Cadherins/genetics , Cadherins/metabolism , Cells, Cultured , Fluorescent Antibody Technique , Microscopy, Confocal , Hep G2 Cells , Epithelial-Mesenchymal Transition , Real-Time Polymerase Chain Reaction , Snail Family Transcription Factors/drug effects , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism , Neoplasm InvasivenessABSTRACT
Os tumores de glândula salivar (TGS) apresentam notável complexidade clínica e biológica, razão para a qual muitos estudos investigam os eventos envolvidos na sua progressão. Uma das dinâmicas envolvidas na invasão tumoral de diversos tipos de carcinomas é a transição epitélio-mesênquima (TEM). Neste processo, as células epiteliais sofrem transição para um estado mesenquimal móvel, favorecendo a invasão e metástase. Sendo assim, esta pesquisa analisou a expressão imuno-histoquímica de E-caderina, Twist1, Snail1, α-SMA, metaloproteinases de matriz 9 (MMP-9) e Vimentina (VM) em 90 casos de TGS, correlacionando-os entre si e com parâmetros clinicopatológicos. Foram selecionados 20 casos de Adenoma pleomórfico (AP), 20 casos de Carcinoma mucoepidermoide (CME), 20 casos de Carcinoma adenoide cístico (CAC), 10 casos de Adenocarcinoma polimorfo (ACP), 10 casos de Carcinoma epitelial-mioepitelial (CEME) e 10 casos de Carcinoma ex-adenoma pleomórfico (CexAP). A análise de E-caderina, Twist1, Snail1 foi realizada em parênquima tumoral sendo observado o percentual de células positivas (PP), com escores variando de 0 a 4, e a intensidade de expressão (IE), cujos escores variaram de 0 a 3. A avaliação de MMP-9 foi realizada em parênquima e estroma tumoral, também avaliando-se a PP e a IE, ambos baseados em escores que variaram de 0 a 3. A marcação para α-SMA e VM foi analisada em região de estroma tumoral. Células positivas para α-SMA foram contabilizadas em 10 campos, obtendo-se, então a média. A VM foi avaliada de forma qualitativa, utilizando-se 4 escores de acordo com a IE e se a marcação é difusa ou focal. Os dados obtidos foram analisados no software Statistical Package for Social Science, GraphPad Prism e STATA. O nível de significância de 5% foi adotado para os testes estatísticos. Foi verificada menor imunomarcação de E-caderina nos APs em relação às neoplasias malignas de glândula salivar (NMGS). Observou-se baixa imunoexpressão de Twist1 e Snail1 em APs. Em relação a expressão nuclear do Twist1, constatou-se maior expressão nas neoplasias malignas quando comparadas aos APs. Ainda, Twist1 em núcleo foi correlacionado à expressão citoplasmática de E-caderina nas NMGS. No que concerne aos parâmetros clinicopatológicos, esta proteína se relacionou estatisticamente com maiores chances de óbito. Foi evidenciada baixa imunoexpressão de Snail1 entre as NMGS. No entanto, na análise dos CACs, foi verificada maior expressão nuclear na variante sólida em relação às demais. A expressão de MMP-9 em parênquima demonstrou correlação positiva com Twist1 citoplasmático e Snail1nuclear nas NMGS. A MMP-9 também apresentou correlação positiva na comparação da sua imunoexpressão em região de parênquima e de estroma. A VM se apresentou como um biomarcador a ser considerado na avaliação clínica dos pacientes, já que esta apresentou relação significativa com tamanho do tumor (T3-T4) e maior frequência de óbito. Ademais, a alta expressão desta proteína se apresentou como um fator preditivo independente para piores taxas de sobrevida global (SG). A avaliação dos demais fatores clinicopatológicos apresentou estágios clínicos avançados como indicador de valor prognóstico independente para menores taxas de SG, enquanto que para a sobrevida livre da doença, estes foram a localização em glândula salivar menor e presença de metástase à distância. Os resultados deste estudo sugerem que o processo de TEM pode estar relacionado ao estágio de diferenciação celular em APs e à progressão tumoral nas NMGS. Ressalta-se, também, maior participação de Twist1 e MMP-9 no cenário da TEM em tumores malignos de glândula salivar, além da possibilidade de utilização da VM como indicador de valor prognóstico (AU).
Salivary gland tumors (SGTs) present remarkable clinical and biological complexity; therefore, many studies investigate the events involved in their progression. One of the dynamics involved in the tumor invasion of different types of carcinomas is the epithelial-mesenchymal transition (EMT). In this process, epithelial cells undergo a transition to a mobile mesenchymal state, favoring invasion and metastasis. Therefore, this research analyzed the immunohistochemical expression of E-cadherin, Twist1, Snail1, α-SMA, vimentin (VM) and matrix metalloproteinase 9 (MMP-9) in 90 SGTs cases; correlations among the biomarkers, as well as between the biomarkers and clinicopathological parameters were made. We selected 20 cases of pleomorphic adenoma (PA), 20 cases of mucoepidermoid carcinoma (MEC), 20 cases of adenoid cystic carcinoma (ACC), 10 cases of polymorphous adenocarcinoma (PAC), 10 cases of epithelial-myoepithelial carcinoma (EMC) and 10 cases of carcinoma ex-pleomorphic adenoma (CXPA). E-cadherin, Twist1, and Snail1 were analyzed in tumor parenchyma, observing the percentage of positive cells (PP) using scores ranging from 0 to 4, and the expression intensity (EI), whose scores were ranged from 0 to 3. The evaluation of MMP-9 was performed in tumor parenchyma and stroma, also evaluating PP and IE, both based on scores that ranged from 0 to 3. The labeling for α-SMA and VM was analyzed in stromal cells. Positive cells for α-SMA were counted in 10 fields and the mean was calculated. VM was evaluated qualitatively, using 4 scores according to EI and whether the labeling was diffuse or focal. Obtained data were analyzed using Statistical Package for Social Science, GraphPad Prism, and STATA software. The significance level of 5% was adopted for the statistical tests. Patients were mostly female, with a mean age of 49.8 years; the major salivary glands were the most affected anatomical site, mainly the parotid gland. A lower E-cadherin immunostaining was verified in PAs in comparison to malignant neoplasms of salivary glands (MNSGs). Low immunoexpression of Twist1 and Snail1 was observed in PAs. Regarding the nuclear expression of Twist1, it was found greater expression in malignant neoplasms than in PAs. Furthermore, Twist1 in the nucleus was correlated with cytoplasmic expression of E-cadherin in MNSGs. Regarding clinicopathological parameters, this protein was statistically related to higher chances of death. Low immunoexpression of Snail1 was evidenced among the MNSGs. However, in the analysis of CACs, greater nuclear expression was observed in the solid variant compared to the others. Expression of MMP-9 in parenchyma showed a positive correlation with cytoplasmic Twist1 and Snail1nuclear in MNSGs. MMP-9 also showed a positive correlation when comparing its immunoexpression in the parenchyma and the stroma. VM was presented as a biomarker to be considered in the clinical evaluation of patients since it showed a significant correlation between greater tumor size and a higher frequency of death. Furthermore, the high expression of this protein appeared as an independent predictive factor for worse overall survival (OS) rates. The evaluation of the rest of the clinicopathological factors showed advanced clinical stages as an indicator of independent prognostic value for lower rates of OS. For disease-free survival, these indicators were the location in the minor salivary gland and the presence of distant metastasis. Our results suggest that the EMT may be related to myoepithelial differentiation in PAs and tumor progression in MNSGs. Also, Twist1 and MMP-9 appear to play a greater role in the scenario of EMT in MNSGs; finally, VM might be used as a prognostic value indicator (AU).
Subject(s)
Vimentin/metabolism , Cadherins/metabolism , Matrix Metalloproteinase 9/metabolism , Twist-Related Protein 1/metabolism , Salivary Gland Neoplasms/pathology , Statistics, Nonparametric , Myofibroblasts , Epithelial-Mesenchymal TransitionABSTRACT
Os cistos e tumores odontogênicos, lesões que acometem o complexo maxilomandibular, podem exibir comportamento clínico-biológico mais agressivo. E a transição epitelialmesenquimal (TEM), processo pelo qual as células epiteliais perdem propriedades fenotípicas e adquirem características de células mesenquimais, incluindo maior motilidade e capacidade de invasão, através da regulação de fatores centrais de transcrição e suas vias associadas, podem fazer parte de características associadas às lesões odontogênicas. Dessa forma, o presente trabalho buscou analisar e comparar a expressão imuno-histoquímica de proteínas (Zeb1, Ecaderina, N-caderina e vimentina) envolvidas no processo de TEM, em lesões odontogênicas epiteliais benignas. A amostra consistiu em 88 casos de lesões odontogênicas, das quais compreendem 28 casos de ameloblastoma (AB), 30 de ceratocisto odontogênico (CO) e 30 de cisto dentígero (CD). Todos os espécimes submetidos à técnica imuno-histoquímica foram avaliados por microscopia de luz, e submetidos à escolha aleatória de 5 (cinco) campos, os quais foram fotografados em um aumento de 400x. A avaliação da expressão de cada marcador, a partir da análise em seu compartimento celular específico, foi feita de forma semiquantitativa, através da multiplicação dos escores associados à porcentagem de células imunomarcadas pelos escores relacionados à intensidade da coloração, sendo feita uma média dos cinco campos e o resultado definido como baixa expressão ou alta expressão, conforme metodologia utilizada. As associações foram feitas através do teste de Qui-quadrado e as correlações através do teste de correlação de Spearman. O nível de significância foi estabelecido em 5% (p < 0,05). Os resultados mostraram um pico de prevalência entre a 2ª e 3ª décadas de vida, em todas as lesões estudadas, com um acometimento maior em região posterior de mandíbula, e os ABs foram as lesões de maiores tamanhos, com 65% medindo acima de 2,5cm. A imuno-histoquímica evidenciou baixa expressão de Zeb1 em epitélio odontogênico das lesões estudadas, alta expressão de E-caderina e N-caderina, e uma expressão intermediária de vimentina. Quando realizada a correlação entre os marcadores, observou-se nos casos de AB uma correlação positiva e moderada entre Zeb1 nuclear e E-caderina membranar, Zeb1 citoplasmática e E-caderina membranar e entre E-caderina e vimentina citoplasmáticas. Como também uma correlação positiva moderada, nos casos de CD, entre Zeb1 nuclear e vimentina citoplasmática, e entre Zeb1 e vimentina citoplasmáticas. Logo, podemos concluir que Zeb1 pode estar atuando indiretamente nas vias responsáveis pelo crescimento e características morfológicas dessas lesões estudadas. Além disso, a expressão diferencial de E-caderina, Ncaderina e vimentina demonstraram fazer parte de um processo de TEM parcial nas lesões odontogênicas epiteliais benignas estudadas (AU).
Odontogenic cysts and tumors, lesions that affect the maxillomandibular complex, may exhibit a more aggressive clinical-biological behavior. And the epithelial-mesenchymal transition (EMT), a process by which epithelial cells lose phenotypic properties and acquire characteristics of mesenchymal cells, including increased motility and invasiveness, through the regulation of central transcription factors and their associated pathways, may be part of characteristics associated with odontogenic lesions. Thus, the present work sought to analyze and compare the immunohistochemical expression of proteins (Zeb1, E-cadherin, N-cadherin and vimentin) involved in the MET process in benign epithelial odontogenic lesions. The sample consisted of 88 cases of odontogenic lesions, comprising 28 cases of ameloblastoma (AB), 30 of odontogenic keratocyst (CO) and 30 of dentigerous cyst (CD). All specimens submitted to the immunohistochemical technique were evaluated by light microscopy and submitted to the random choice of 5 (five) fields, which were photographed at a magnification of 400x. The evaluation of the expression of each marker, based on the analysis in its specific cellular compartment, was carried out in a semi-quantitative manner, through the multiplication of the scores associated with the percentage of immunostained cells by the scores related to the intensity of staining, with an average of the five fields and the result defined as low expression or high expression, according to the methodology used. The associations were made using the chi-square test and the correlations using the Spearman correlation test. The significance level was set at 5% (p < 0.05). The results showed a prevalence peak between the 2nd and 3rd decades of life, in all the lesions studied, with a greater involvement in the posterior region of the mandible, and the ABs were the largest lesions, with 65% measuring above 2, 5cm. Immunohistochemistry showed low expression of Zeb1 in the odontogenic epithelium of the lesions studied, high expression of E-cadherin, high expression of N-cadherin and an intermediate expression of vimentin. When the correlation between the markers was performed, a positive and moderate correlation was observed in the cases of AB between nuclear Zeb1 and membrane E-cadherin, cytoplasmic Zeb1 and membrane E-cadherin and between cytoplasmic E-cadherin and vimentin. As well as a moderate positive correlation, in CD cases, between nuclear Zeb1 and cytoplasmic vimentin, and between cytoplasmic Zeb1 and vimentin. Therefore, we can conclude that Zeb1 may be acting indirectly on the pathways responsible for the growth and morphological characteristics of these lesions studied. Furthermore, the differential expression of E-cadherin, N-cadherin and vimentin was shown to be part of a partial TEM process in the benign epithelial odontogenic lesions studied (AU).
Subject(s)
Humans , Male , Female , Vimentin/metabolism , Odontogenic Cysts/pathology , Cadherins/metabolism , Epithelial-Mesenchymal Transition , Odontogenic Tumors/pathology , Chi-Square Distribution , Medical Records , Prospective Studies , Retrospective Studies , Statistics, Nonparametric , Observational StudyABSTRACT
SUMMARY: Carnosine is known as a natural dipeptide, which inhibits the proliferation of tumor cells throughout its action on mitochondrial respiration and cell glycolysis. However, not much is known about its effects on the metabolism of healthy cells. We explored the effects of Karnozin EXTRA® capsule with different concentrations of L-carnosine, on the cell viability and the expressions of intermediate filament vimentin (VIM) and superoxide dismutase (SOD2) in normal fibroblasts BHK-21/C13. Furthermore, we investigated its action on the energy production of these cells. Cell viability was quantified by the MTT assay. The Clark oxygen electrode (Oxygraph, Hansatech Instruments, England) was used to measure the "intact cell respiration rate", state 3 of ADP-stimulated oxidation, maximum oxidation capacity and the activities of complexes I, II and IV. Results showed that Karnozin EXTRA® capsule in concentrations of 2 and 5 mM of L-carnosine did not induce toxic effects and morphological changes in treated cells. Our data revealed a dose-dependent immunofluorescent signal amplification of VIM and SOD2 in the BHK-21/C13 cell line. This supplement substantially increased the recorded mitochondrial respiration rates in the examined cell line. Due to the stimulation of mitochondrial energy production in normal fibroblasts, our results suggested that Karnozin EXTRA® is a potentially protective dietary supplement in the prevention of diseases with altered mitochondrial function.
RESUMEN: La carnosina se conoce como dipéptido natural, que inhibe la proliferación de células tumorales a través de su acción sobre la respiración mitocondrial y la glucólisis celular. Sin embargo, no se sabe mucho de sus efectos sobre el metabolismo de las células sanas. Exploramos los efectos de la cápsula Karnozin EXTRA® con diferentes concentraciones de L-carnosina, sobre la viabilidad celular y las expresiones de vimentina de filamento intermedio (VIM) y superóxido dismutasa (SOD2) en fibroblastos normales BHK-21 / C13. Además, estudiamos su acción sobre la producción de energía de estas células. La viabilidad celular se cuantificó mediante el ensayo MTT. Se utilizó el electrodo de oxígeno Clark (Oxygraph, Hansatech Instruments, Inglaterra) para medir la "tasa de respiración de células intactas", el estado 3 de oxidación estimulada por ADP, la capacidad máxima de oxidación y las actividades de los complejos I, II y IV. Los resultados mostraron que la cápsula de Karnozin EXTRA® en concentraciones de 2 y 5 mM de L- carnosina no indujo efectos tóxicos ni cambios morfológicos en las células tratadas. Nuestros datos revelaron una amplificación de señal inmunofluorescente dependiente de la dosis de VIM y SOD2 en la línea celular BHK-21 / C13. Este suplemento aumentó sustancialmente las tasas de respiración mitocondrial registradas en la línea celular examinada. Debido a la estimulación de la producción de energía mitocondrial en fibroblastos normales, nuestros resultados sugirieron que Karnozin EXTRA® es un suplemento dietético potencialmente protector en la prevención de enfermedades con función mitocondrial alterada.