Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Year range
Braz. j. microbiol ; 49(4): 840-847, Oct.-Dec. 2018. graf
Article in English | LILACS | ID: biblio-974284


ABSTRACT Anthracnose is a crop disease usually caused by fungi in the genus Colletotrichum or Gloeosporium. These are considered one of the main pathogens, causing significant economic losses, such as in peppers and guarana. The current forms of control include the use of resistant cultivars, sanitary pruning and fungicides. However, even with the use of some methods of controlling these cultures, the crops are not free of anthracnose. Additionally, excessive application of fungicides increases the resistance of pathogens to agrochemicals and cause harm to human health and the environment. In order to find natural antifungal agents against guarana anthracnose, endophytic fungi were isolated from Amazon guarana. The compounds piliformic acid and cytochalasin D were isolated by chromatographic techniques from two Xylaria spp., guided by assays with Colletotrichum gloeosporioides. The isolated compounds were identified by spectrometric techniques, as NMR and mass spectrometry. This is the first report that piliformic acid and cytochalasin D have antifungal activity against C. gloeosporioides with MIC 2.92 and 2.46 µmol mL-1 respectively. Captan and difenoconazole were included as positive controls (MIC 16.63 and 0.02 µmol mL-1, respectively). Thus, Xylaria species presented a biotechnological potential and production of different active compounds which might be promising against anthracnose disease.

Plant Diseases/prevention & control , Xylariales/chemistry , Paullinia/microbiology , Endophytes/chemistry , Fungicides, Industrial/pharmacology , Phylogeny , Plant Diseases/microbiology , Mass Spectrometry , Xylariales/isolation & purification , Xylariales/genetics , Xylariales/metabolism , Molecular Structure , Colletotrichum/drug effects , Colletotrichum/physiology , Endophytes/isolation & purification , Endophytes/genetics , Endophytes/metabolism , Fungicides, Industrial/isolation & purification , Fungicides, Industrial/chemistry
Braz. j. microbiol ; 45(1): 287-293, 2014. ilus, tab
Article in English | LILACS | ID: lil-709489


To optimize the medium for high zofimarin production, sucrose maltose, glucose, tryptone and peptone were used in an orthogonal array design experiment, where the highest value of zofimarin produced was 25.6 µg/mL. This value was about 3 times higher than that obtained with Czapek yeast extract (CzYE) culture medium. A study with Plackett-Burman design showed that sucrose, maltose, glucose and NaNO3 were significant factors in zofimarin production. Further studies using central composite design (CCD) showed the significance of glucose and the interactions of these critical components affecting zofimarin production. Multiple regression analysis of the data yielded a poor fit as shown by the mismatch of the model with these variable factors. When a polynomial equation was applied, the maximum zofimarin production was predicted to be 201.9 µg/mL. Experimental verification yielded a much lower amount of zofimarin, at around 70 µg/mL. Reconsideration of the CCD data and repetition of some runs with high zofimarin production resulted in reproducible zofimarin yield at 79.7 µ/mL. Even though the amount was lower than the predicted value, the medium optimization study was considered to be quite successful as the yield increased to around 8 times that obtained with the original CzYE culture medium.

Antifungal Agents/metabolism , Culture Media/chemistry , Endophytes/metabolism , Xylariales/metabolism , Indenes/metabolism