Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
São José dos Campos; s.n; 2021. 70 p. ilus, tab, graf.
Thesis in Portuguese | LILACS, BBO | ID: biblio-1359883

ABSTRACT

O objetivo deste trabalho foi avaliar a resistência à fadiga e ciclos até a falha de 3 zircônias odontológicas após envelhecimento hidrotérmico isolado e um novo protocolo alternado. Discos de zircônia "Y"Z T (VITA), INCORIS "T"ZI (Dentsply Sirona) e "K"ATANA UTML (Noritake Kuraray) (N=135) ­ 1ª, 2ª e 3ª gerações, respectivamente ­, foram divididos em 9 grupos (n=15), com 3 tratamentos para cada zircônia: CF ­ Controle, somente com fadiga mecânica; EF ­ Envelhecido em reator hidrotérmico a 134 ºC por 20 h + Fadiga; EFA: 4 passos de envelhecimentos de 5h alternados com fadiga. O teste de fadiga em flexão biaxial foi realizado com configuração de pistão sob 3 esferas, utilizando o método step-stress (carga inicial: 100 Mpa, step: 50 MPa/10.000 ciclos, frequência: 20 Hz). Os dados foram analisados através de teste Kaplan-Meir e Mantel-Cox com α=0,05, além da análise de Weibull. Discos fraturados foram analisados em estereomicroscópio, Microscopia Eletrônica de Varredura (MEV) e Difratômetro de Raios-X (DRX). O envelhecimento isolado com fadiga aumentou a resistência do grupo TEF (810 ± 76 MPa), enquanto diminuiu a do YEF (516 ± 38 MPa), o protocolo alternado aumentou a resistência apenas para a YZ T (730 ± 59 MPa). A KATANA UMTL não apresentou diferenças para ambos os tratamentos. Igualmente, foi a única a não sofrer transformação de fase T-M. O grupo TEF apresentou maior taxa sobrevivência à fadiga (147,000.00 ciclos). A origem de fratura para todos os espécimes deu-se no lado de tração em defeitos pré-existentes. Zircônias de 2ª geração possuem melhor comportamento mecânico e longevidade pós-envelhecimento e fadiga. Embora seja menos resistente, a KATANA UTML não sofreu degradação


This study aimed to evaluate the fatigue strength and cycles for failure of 3 dental zirconias after isolated and a novel hydrothermal and mechanical fatigue cycling aging protocol. "Y"Z T (VITA), INCORIS "T"ZI (Dentsply Sirona) and "K"ATANA UTML (Noritake Kuraray) zirconia discs (N=135), were divided into 9 groups (n=15), according to 3 proposed treatments for each zirconia: CF (control ­ only mechanical fatigue cycling); AF (aging in hydrothermal reactor at 134°C for 20 h + mechanical fatigue cycling ); AFA (Alternating protocol: 4 steps of 5 h of hydrothermal aging intercalated with mechanical fatigue cycling). Mechanical fatigue aging was performed according to the step stress approach through biaxial flexural setup (piston-on-3-balls, initial strength: 100 MPa, step: 50 MPa/ci000, frequency: 20 Hz) until failure. Data were analyzed using KaplanMeier and Mantel-Cox test (α=0.05), in addition to Weibull analysis. Fractured discs were analyzed in stereomicroscope, Scanning Electron Microscopy and XRay Diffraction. Continuous hydrothermal and mechanical fatigue cycling decreased the fatigue strength of YAF group (516 ± 38 MPa), while the alternating protocol increased it (730 ± 59 MPa). KATANA UTML showed no differences for both treatments and did not undergo T-M phase transformation. The TAF group showed the highest fatigue strength (810 ± 76 MPa) and cycles for failure (147,000.00 cycles). The fracture origin for all specimens was on the tensile side in pre-existing defects. INCORIS TZI zirconia have higher fatigue strength after hydrothermal and mechanical fatigue aging. Although less resistant, KATANA UTML did not suffer chemical degradation


Subject(s)
Tensile Strength , Zirconium/chemistry , Materials Testing , Ceramics , X-Ray Diffraction , Biocompatible Materials/analysis , Microscopy, Electrochemical, Scanning
2.
São José dos Campos; s.n; 2021. 75 p. ilus, graf, tab.
Thesis in Portuguese | LILACS, BBO | ID: biblio-1362274

ABSTRACT

Este estudo avaliou a resistência à fadiga cíclica de estruturas em forma de disco cerâmico multicamada de configuração tradicional (T) e bionispirado em macroescala (B), cimentadas de forma adesiva ao substrato analógo à dentina. As amostras foram produzidas com zircônia (Ø = 10 mm, espessura = 0,5 mm) e cerâmica feldspática (Ø = 10 mm, espessura = 1,5 mm) e foram unidas com três técnicas diferentes (n = 15): Injeção (inj); com vidro de fusão Crystal Connect (cv) e técnica cimentada (cim). Para a configuração tradicional a zircônia foi a infraestrura sobre qual a cerâmica feldspática foi aderida. Para os bioinspirados, a zircônia foi a supraestrutura e a cerâmica feldspática foi a infraestrutura. Os discos foram cimentados em resina G-10 (Ø = 10 mm, espessura = 1,5 mm). As amostras foram testadas sob a abordagem de fadiga cíclica até apresentar alguma trinca observada por transluminação. O método stepwise: 20 Hz, seguidos por etapas incrementais de 200 N a cada 10 x 103ciclos, com carga inicial de 600 N até 2600 N com pistão de 40 mm de diâmetro e célula de carga de 5 KN (Instron Electropuls E 3000, Instron, Glenview, IL, EUA). Todas as amostras foram analisadas estereomicroscópio para determinar o tipo de falha e uma amostra representativa de cada grupo foi analisada no microscópio eletrônico de varredura (MEV). As configurações bioinspiradas testadas foram estatisticamente semelhantes (p > 0,05) e não aumentaram a sobrevivência à fadiga das estruturas comparadas com a técnica tradicional. A bioinspiração apresentou predominantemente trincas radias e únicas. A gradação do modulo elástico em macroescala e a configuração das estruturas. A utilização do conector vítreo se mostro favorável para diminuir das trincas no material análogo á dentina.


This study evaluated the cyclic fatigue resistance of multilayer ceramic discshaped structures of traditional configuration (T) and macroscale bionispirate (B), cemented adhesively to the substrate analogic to dentin. The samples were produced with zirconia (Ø = 10 mm, thickness = 0.5 mm) and feldspar ceramics (Ø = 10 mm, thickness = 1.5 mm) and were joined with three different techniques (n = 15): Injection (inj); with Crystal Connect melting glass (cv) and cemented technique (Cim). For the traditional configuration zirconia was the infraestrura on which the feldspathic ceramic was adhered. For the bioinspired, zirconia was the superstructure, and feldspathic ceramics was the infrastructure. The discs were cemented in G-10 resin (Ø = 10 mm, thickness = 1.5 mm). The samples were tested under the cyclic fatigue approach until some crack was observed by translumination. The stepwise method: 20 Hz, followed by incremental steps of 200 N every 10 x 103 cycles, with initial charge from 600 N to 2600 N (40 mm diameter piston) and 5 KN load cell (Instron Electropuls E 3000, Instron, Glenview, IL, USA). All samples were analyzed stereomicroscopically to determine the type of failure and a representative sample of each group was analyzed in the scanning electron microscope (SEM). The bioinspired configurations tested were statistically similar (p > 0.05) and did not increase the fatigue survival of the structures compared to the traditional technique. The bioinspiration presented predominantly radial and unique cracks. The use of the vitreous connector was favorable to decrease the cracks in the analogous dentin material.


Subject(s)
Zirconium/chemistry , Dental Prosthesis , Dental Porcelain , Materials Testing , Microscopy, Electron, Scanning , Survival Analysis , Shear Strength
3.
J. oral res. (Impresa) ; 9(5): 414-422, oct. 31, 2020. ilus, tab
Article in English | LILACS | ID: biblio-1179033

ABSTRACT

Purpose: Two important factors in dental prosthesis are making an accurate impression and producing a suitable cast which represents the exact relationship between prepared tooth and oral structures. This study, aimed to investigate the effects of different combinations of impression and pouring materials on marginal and internal adaptation of premolar zirconia crowns. Material and Methods: Forty maxillary premolars were prepared considering round shoulder finish line. The impressions were made either by additional (Panasil) or condensation (Speedex) silicon, and poured by two different types of gypsum materials (Siladent or GC gypsum) (N=10). Zirconia crowns were fabricated using a CAD-CAM system. The crowns were cemented, and the samples were cut in bucco-lingual direction. Marginal and internal gaps were measured by stereomicroscope (×25). Results: The mean marginal gaps for Pansil-Siladent, Panasil-GC, Speedex-Siladent, and Speedex-GC were 141 µm, 143 µm, 131 µm, and 137 µm respectively. The internal gaps were 334 µm, 292 µm, 278 µm, and 257 µm respectively. The independent T-Student test showed no significant differences in average marginal or internal gap among various impression and gypsum materials or their interactions (p>0.05). Two-way ANOVA test showed no significant differences in maximum marginal or internal gap among various impression and gypsum materials and their interactions (p>0.05). Conclusion: The present study revealed no statistically significant difference in marginal/internal gap among crowns prepared using different combinations of impression-pouring materials evaluated.


Introducción: Dos factores importantes en la prótesis dental son hacer una impresión precisa y la producción de un modelo adecuado que represente la relación exacta entre el diente preparado y las estructuras orales. Este estudio, tuvo como objetivo investigar los efectos de diferentes combinaciones de materiales de impresión y vertido sobre la adaptación marginal e interna de coronas de zirconio premolar. Material y Métodos: Se prepararon cuarenta premolares maxilares considerando la línea de meta del hombro redondo. Las impresiones se realizaron con silicio adicional (Panasil) o de condensación (Speedex) y se vertieron con dos tipos diferentes de materiales de yeso (yeso Siladent o GC) (N = 10). Las coronas de zirconio se fabricaron utilizando el sistema CAD-CAM. Las coronas se cementaron y las muestras se cortaron en dirección buco-lingual. La brecha marginal e interna se midió con estereomicroscopio (×25). Resultados: Las brechas marginales medias para Pansil-Siladent, Panasil-GC, Speedex-Siladent y Speedex-GC fueron de 141µm, 143µm, 131µm y 137µm, respectivamente. Las brechas internas fueron 334µm, 292µm, 278µm y 257µm, respectivamente. La prueba de T-Student independiente no mostró diferencias significativas en la brecha marginal o interna promedio entre varios materiales de impresión y yeso o sus interacciones (p>0.05). La prueba ANOVA bidireccional no mostró diferencias significativas en el espacio marginal o interno máximo entre varios materiales de yeso y de impresión y sus interacciones (p>0.05). Conclusión: El presente estudio no reveló diferencias estadísticamente significativas en la brecha marginal/interna entre las coronas preparadas con diferentes combinaciones de materiales de impresión y vertido evaluados.


Subject(s)
Humans , Dental Prosthesis/methods , Crowns , Dental Impression Materials , Zirconium/chemistry , Bicuspid , Calcium Sulfate , Computer-Aided Design , Dental Cements , Dental Restoration, Permanent
4.
J. oral res. (Impresa) ; 9(1): 63-71, feb. 28, 2020. graf, tab
Article in English | LILACS | ID: biblio-1151505

ABSTRACT

Optimal flexural strength is a critical prerequisite for prosthetic frameworks. This study aimed to assess the flexural strength of polyether ether ketone (PEEK) polymer compared to a base metal alloy and high-strength Zirconia ceramic commonly used in prosthodontic treatments. Materials and Methods: In this in vitro, experimental study, 10 bar-shaped samples measuring 18×5×2mm were fabricated of each the PEEK polymer, nickel-chromium base metal alloy and zirconia ceramic. Half of the samples in each group were subjected to 5000 thermal cycles between 5°C - 55°C with 20 seconds of dwell time and 20 seconds of transfer time to simulate oral conditions. All samples then underwent three-point bending test. Two-way ANOVA followed by Tukey's test were applied to compare the mean flexural strength of the groups with and without thermocycling at 0.05 level of significance. Results: The flexural strength of base metal alloy, Zirconia and PEEK was 1387.70±45.50 MPa, 895.13±13.99 MPa and 192.10±5.37 MPa, respectively. The difference was significant among the groups (p<0.001). Thermocycling had no significant effect on the flexural strength of samples in any group (p=0.306). Conclusion: PEEK high-performance polymer had a lower flexural strength than base metal alloy and Zirconia ceramic, and its flexural strength was not affected by thermocycling. PEEK seems to be able to resist masticatory forces in the oral cavity pending further in vitro and clinical studies.


La resistencia a la flexión óptima es un requisito previo crítico para los marcos protésicos. Este estudio tuvo como objetivo evaluar la resistencia a la flexión del polímero de poliéter éter cetona (PEEK) en comparación con una aleación de metal base y cerámica de Zirconia de alta resistencia comúnmente utilizada en tratamientos de prostodoncia. Materiales and Métodos: En este estudio experimentalin vitro, se fabricaron 10 muestras en forma de barra de 18 × 5 × 2mm de cada polímero PEEK, aleación de metal base de níquel-cromo y cerámica de circonio. La mitad de las muestras en cada grupo fueron sometidas a 5000 ciclos térmicos entre 5°C - 55°C con 20 segundos de tiempo de permanencia y 20 segundos de tiempo de transferencia para simular condiciones orales. Todas las muestras se sometieron a una prueba de flexión de tres puntos. Se aplicó ANOVA bidireccional seguido de la prueba de Tukey para comparar la resistencia a la flexión media de los grupos con y sin termociclado a un nivel de significancia de 0.05. Resultados: La resistencia a la flexión de la aleación de metal base, Zirconia y PEEK fue de 1387,70 ± 45,50 MPa; 895,13 ± 13,99 MPa y 192.10 ± 5,37 MPa, respectivamente. La diferencia fue significativa entre los grupos (p<0,001). El termociclado no tuvo un efecto significativo sobre la resistencia a la flexión de las muestras en ningún grupo (p=0,306).Conclusión:El polímero de alto rendimiento PEEK tiene una resistencia a la flexión más baja que la aleación de metal base y la cerámica de circonio, y su resistencia a la flexión no se vio afectada por el termociclado. PEEK parece ser capaz de resistir las fuerzas masticatorias en la cavidad oral, con la necesidad de más estudios in vitroy clínicos.


Subject(s)
Humans , Prosthodontics/methods , Zirconium/chemistry , Flexural Strength , Biocompatible Materials , In Vitro Techniques , Composite Resins , Dental Materials , Dental Stress Analysis
5.
Braz. oral res. (Online) ; 34: e005, 2020. tab, graf
Article in English | LILACS | ID: biblio-1055521

ABSTRACT

Abstract The purpose of this study was to evaluate the effect of ionizing radiation from high energy X-ray on fluoride release, surface roughness, flexural strength, and surface chemical composition of the materials. The study groups comprised five different restorative materials: Beautifil II, GCP Glass Fill, Amalgomer CR, Zirconomer, and Fuji IX GP. Twenty disk-shaped specimens (8x2 mm) for fluoride release and 20 bar-shaped specimens (25 x 2x 2 mm) for flexural strength were prepared from each material. Each material group was divided into two subgroups: irradiated (IR) and non-irradiated (Non-IR). The specimens from IR groups were irradiated with 1.8 Gy/day for 39 days (total IR = 70.2 Gy). The amount of fluoride released into deionized water was measured using a fluoride ion-selective electrode and ion analyzer after 24 hours and on days 2, 3, 7, 15, 21, 28, 35, and 39 (n = 10). The flexural strength was evaluated using the three-point bending test (n = 10). After the period of measurement of fluoride release, seven specimens (n = 7) from each group were randomly selected to evaluate surface roughness using AFM and one specimen was randomly selected for the SEM and EDS analyses. Data were analyzed with two-way ANOVA and Tukey tests (p = 0.05). The irradiation significantly increased fluoride release and surface roughness for Amalgomer CR and Zirconomer groups (p < 0.05). No significant change in flexural strength of the materials was observed after irradiation (p > 0.05). The ionizing radiation altered the amount of fluoride release and surface roughness of only Amalgomer CR and Zirconomer. The effect could be related to the chemical compositions of materials.


Subject(s)
Apatites/radiation effects , Radiation, Ionizing , Bisphenol A-Glycidyl Methacrylate/radiation effects , Composite Resins/radiation effects , Fluorides/chemistry , Glass Ionomer Cements/radiation effects , Apatites/chemistry , Reference Values , Spectrometry, X-Ray Emission , Surface Properties/radiation effects , Time Factors , Zirconium/radiation effects , Zirconium/chemistry , Materials Testing , Microscopy, Electron, Scanning , Reproducibility of Results , Analysis of Variance , Bisphenol A-Glycidyl Methacrylate/chemistry , Statistics, Nonparametric , Composite Resins/chemistry , Flexural Strength , Glass Ionomer Cements/chemistry
6.
J. appl. oral sci ; 28: e20190371, 2020. tab, graf
Article in English | LILACS, BBO | ID: biblio-1056595

ABSTRACT

Abstract Objective This study aims to evaluate the influence of different air-abrasion pressures and subsequent heat treatment on the flexural strength, surface roughness, and crystallographic phases of highly translucent partially stabilized zirconia (Y-PSZ), and on the tensile bond strength of resin cement to Y-PSZ. Methodology Fully sintered zirconia specimens were ground with SiC paper (control) and/or air-abraded with 50 µm particles of alumina at 0.1, 0.15, 0.2, or 0.3 MPa or left as-sintered. After air-abrasion at 0.2 MPa (0.2AB), additional specimens were then heated to 1500°C, and held for one hour at this temperature (0.2AB+HT1h). Flexural strength and surface roughness were evaluated. Crystalline phase identification was also carried out using X-ray diffraction. Bonded zirconia specimens with self-adhesive resin cement were stored in distilled water at 37°C for 24 h, either with or without aging (thermal cycling 4-60°C/20000). Results were analyzed statistically by ANOVA and Tukey-Kramer tests. Results The flexural strength decreased with the increase in air-abrasion pressure, while in contrast, the surface roughness increased. The lowest flexural strength and the highest roughness value were found for the 0.2AB and 0.3AB groups, respectively. All groups contained cubic-, tetragonal ( t )-, and rhombohedral ( r )-ZrO2 phases with the exception of the as-sintered group. Upon increasing the air-abrasion pressure, the relative amount of the r -ZrO2 phase increased, with a significant amount of r -ZrO2 phase being detected for the 0.2AB and 0.3AB groups. The 0.2AB+HT1h group exhibited a similar flexural strength and t -ZrO2 phase content as the as-sintered group. However, the 0.2AB group showed a significantly higher tensile bond strength (p<0.05) than the 0.2AB+HT1h group before and after aging. Conclusion Micromechanical retention by alumina air-abrasion at 0.2 MPa, in combination with chemical bonding of a resin to highly translucent Y-PSZ using a MDP-containing resin cement may enable durable bonding.


Subject(s)
Zirconium/chemistry , Dental Bonding/methods , Resin Cements/chemistry , Air Abrasion, Dental/methods , Aluminum Oxide/chemistry , Reference Values , Surface Properties , Tensile Strength , X-Ray Diffraction/methods , Materials Testing , Reproducibility of Results , Analysis of Variance , Microscopy, Confocal/methods , Flexural Strength , Hot Temperature
7.
J. oral res. (Impresa) ; 8(4): 298-304, nov. 5, 2019. tab, ilus
Article in English | LILACS | ID: biblio-1145351

ABSTRACT

Objective: the purpose of this multicenter retrospective study was to report on survival, success, and complication rates in monolithic zirconia restorations on teeth and implants. Materials and Methods: data on 671 monolithic zirconia restorations was collected by five prosthodontists from three different specialty practice centers, including a dental school and two private practice centers. Restorations included single crowns and multiple-unit fixed dental prostheses on teeth and implants in the posterior area (premolar and molars). Follow-up time was up to 62 months. Results: mean follow-up time was 28.1±12.9 months. A total of 671 units, 534 single crowns, and 137 multi-unit restorations. Cumulative survival and success rates at 5 years were 97.4%, and 93.8% respectively. Complications presented in 11 restorations out of 671 and included: decementation, abutment screw loosening, restoration crack, restoration fracture, and tooth fracture. No significant differences were observed between tooth-supported and implant-supported restoration (p=0.42), single crowns and multiple-unit restorations (p=0.07), bruxers and non-bruxers (p=0.57). Patients with group function occlusal scheme had significantly less survival rates (p=0.001). Conclusion: the use of monolithic zirconia for restorations on the posterior teeth and implants seems to be promising as it provides a durable solution with a low rate of complications.


Objetivo: el propósito de este estudio retrospectivo multicéntrico fue informar sobre las tasas de supervivencia, éxito y complicaciones en restauraciones monolíticas de circonio en dientes e implantes. Materiales y Métodos: cinco prostodoncistas recolectaron datos de 671 restauraciones monolíticas de zirconia de tres centros de práctica especializados: una escuela de odontología y dos centros de práctica privados. Las restauraciones incluyeron coronas individuales y prótesis dentales fijas de unidades múltiples en dientes e implantes en el área posterior (premolares y molares). El tiempo de seguimiento fue de hasta 62 meses. Resultados: el tiempo medio de seguimiento fue de 28,1±12,9 meses. Un total de 671 unidades, 534 coronas individuales y 137 restauraciones de unidades múltiples. La supervivencia acumulada y las tasas de éxito a los 5 años fueron del 97,4% y del 93,8%, respectivamente. Las complicaciones se presentaron en 11 restauraciones de 671 e incluyeron: fracaso del cementado, aflojamiento del tornillo del pilar, grieta en la restauración, fractura de restauración y fractura de dientes. No se observaron diferencias significativas entre la restauración con soporte dental y con implante (p=0,42), coronas individuales y restauraciones de unidades múltiples (p=0,07), pacientes con bruxismo y sin bruxismo (p=0,57). Los pacientes con esquema oclusal de función grupal tuvieron tasas de supervivencia significativamente menores (p= 0,0 01). Conclusión: el uso de zirconia monolítica para restauraciones en los dientes posteriores y en implantes parece ser prometedor, ya que proporciona una solución duradera con una baja tasa de complicaciones.


Subject(s)
Humans , Zirconium/chemistry , Dental Implants, Single-Tooth , Dental Implantation, Endosseous , Tooth Fractures , Retrospective Studies , Treatment Outcome , Dental Prosthesis Retention/statistics & numerical data , Crowns , Dental Cements
8.
J. appl. oral sci ; 27: e20180351, 2019. graf
Article in English | LILACS, BBO | ID: biblio-1012511

ABSTRACT

Abstract Objective Since the transmittance of ceramics can influence the degree of conversion (DC) of resin cements, ceramics composition and shade should be considered in the selection of resin cement. This in vitro study aimed to evaluate the effect of the transmittance of different composition, opacities and shades of ceramics on the degree of conversion of two dual-cured resin cements. Methodology Sixty discs were prepared from low translucency (LT) and medium opacity (MO) lithium disilicate ceramic, and zirconia ceramic (Z). Each group was subdivided into 5 subgroups (n=4) in shades A2, A3.5, B2, C2 and D3. The transmittance measurement was performed in a spectrophotometer. The Variolink II and Rely X U200 resin cements were photoactivated by LED (1400 mW/cm2) for 40 s through the ceramic discs and without the discs (control group). The DC was measured with infrared FTIR spectroscopy, immediately after light activation. Data were analyzed with Kruskall-Wallis and one-way ANOVA, following post-hoc comparisons by Tukey test and Pearson's correlation test (P<0.05). Results LT ceramic exhibited higher transmittance values compared to MO and Z ceramics. LTA2 and LTB2 showed statistically higher transmittance values compared to MOA2, MOA3.5 and ZA3.5. For Variolink II, the ceramic interposition did not influence the DC, since there were no statistical differences between groups with ceramic interposition and the control group. For Rely X U200 cement, the interposition of some ceramics types/shades (LTA3.5, MOA2, MOA3.5 and ZA3.5) significantly decreased the DC values compared to control group. A positive correlation was found between the ceramic transmittance and DC values of both tested cements. Conclusions. The transmittance and DC values of the cements were influenced by composition and shades of the ceramics. The higher the transmittance of ceramics, the higher the DC values for both cements.


Subject(s)
Zirconium/chemistry , Resin Cements/chemistry , Dental Porcelain/chemistry , Reference Values , Spectrophotometry/methods , Materials Testing , Reproducibility of Results , Analysis of Variance , Statistics, Nonparametric , Phase Transition , Light-Curing of Dental Adhesives , Curing Lights, Dental , Polymerization
9.
J. appl. oral sci ; 27: e20180449, 2019. tab, graf
Article in English | LILACS, BBO | ID: biblio-1002401

ABSTRACT

Abstract Objective This study aims to evaluate the effect of sonochemical treatment on the surface of yttria-stabilized tetragonal zirconia (Y-TZP) before and after the final sintering. Material and Methods Twenty-eight Y-TZP discs were divided into four groups (n=7), according to surface treatment: PRE: pre-sintering sonication with 30% nominal power for 15 min; POS: post-sintering sonication with 30% nominal power for 15 min; JAT: air abrasion with 50-μm alumina particles; and CON: control group with no treatment. The POS and JAT groups were sintered before sonication and the PRE group after sonication. Surface roughness was analyzed using confocal microscopy, after which resin cement cylinders were placed on the surface of the Y-TZP discs and subjected to mechanical microshear bond strength test until fracture. Surface roughness and microshear bond strength values underwent ANOVA and the Tukey tests. Results The surface roughness values for the PRE group (299.91 nm) and the POS group (291.23 nm) were not significantly different (p≥0.05), statistically, and the surface roughness value of the JAT group (925.21 nm) was higher than those of PRE and POS (p=0.007) groups. The mechanical microshear bond strength test showed that there was no statistically significant difference between the groups (p=0.08). Conclusions Therefore, the results showed that sonochemical treatment modifies the Y-TZP surface and is similar to the well-established sandblasting surface treatment regarding the strength of the bond with the resin cement.


Subject(s)
Yttrium/chemistry , Zirconium/chemistry , Dental Bonding/methods , Resin Cements/chemistry , Reference Values , Surface Properties , Materials Testing , Reproducibility of Results , Analysis of Variance , Statistics, Nonparametric , Air Abrasion, Dental , Shear Strength
10.
J. appl. oral sci ; 27: e20180429, 2019. tab, graf
Article in English | LILACS, BBO | ID: biblio-990101

ABSTRACT

Abstract Objectives: To evaluate the radiopacity of Biodentine (BD) and BD associated with 15% calcium tungstate (BDCaWO4) or zirconium oxide (BDZrO2), by using conventional and digital radiography systems, and their physicochemical and biological properties. Materials and Methods: Radiopacity was evaluated by taking radiographs of cement specimens (n=8) using occlusal film, photostimulable phosphor plates or digital sensors. Solubility, setting time, pH, cytocompatibility and osteogenic potential were also evaluated. Data were analyzed using one-way ANOVA and Tukey post-test or two-way ANOVA and Bonferroni post-test (α=0.05). Results: BD radiopacity was lower than 3 mm Al, while BD ZrO2 and BD CaWO4 radiopacity was higher than 3 mm Al in all radiography systems. The cements showed low solubility, except for BDCaWO4. All cements showed alkaline pH and setting time lower than 34 minutes. MTT and NR assays revealed that cements had greater or similar cytocompatibility in comparison with control. The ALP activity in all groups was similar or greater than the control. All cements induced greater production of mineralized nodules than control. Conclusions: Addition of 15% ZrO2 or CaWO4 was sufficient to increase the radiopacity of BD to values higher than 3 mm Al. BD associated with radiopacifiers showed suitable properties of setting time, pH and solubility, except for BDCaWO4, which showed the highest solubility. All cements had cytocompatibility and potential to induce mineralization in Saos-2 cells. The results showed that adding 15% ZrO2 increases the radiopacity of BD, allowing its radiography detection without altering its physicochemical and biological properties.


Subject(s)
Humans , Zirconium/chemistry , Tungsten Compounds/chemistry , Silicates/chemistry , Calcium Compounds/chemistry , Radiography, Dental, Digital/methods , Osteoblasts/drug effects , Reference Values , Solubility , Time Factors , Zirconium/pharmacology , Materials Testing , Cell Survival/drug effects , Reproducibility of Results , Analysis of Variance , Anthraquinones , Tungsten Compounds/pharmacology , Silicates/pharmacology , Calcium Compounds/pharmacology , Alkaline Phosphatase/analysis , Hydrogen-Ion Concentration
11.
Braz. oral res. (Online) ; 33: e121, 2019. tab, graf
Article in English | LILACS, BBO | ID: biblio-1132648

ABSTRACT

Abstract: The objective of the study was to analyze the surface area (SA) of the wear caused by simulated chewing on human enamel and opposing restorative material, namely: composite resin (CR), porcelain fused to metal (PFM), lithium disilicate (LD), or monolithic zirconia (MZr). Forty-eight premolars were selected as enamel specimens and divided randomly into 4 groups (n = 48; n =12) used as antagonists in chewing simulation (250,000 loading cycles) against one of the four selected test materials. Enamel and material specimens were scanned and evaluated under digital microscope, and wear SA (mm2) were recorded. Descriptive statistics, paired t-test, one-way ANOVA, and post-hoc Tukey-HSD tests were used for statistics (p < 0.05). The smallest and largest SA were exhibited by enamel against LD (0.80 mm2) and PFM (1.74 mm2), respectively. PFM (3.48 mm2) showed the largest SA and CR (2.28 mm2) showed the smallest SA. Paired t-test for SA values showed significant difference (p < 0.05) in all wear comparisons between materials and enamel antagonists. The wear of materials were greater than that of their respective enamel antagonists (p < 0.05). One-way ANOVA of the logarithmic means of wear SA revealed significant differences (P<0.05). Post-hoc Tukey test revealed significance for PFM (p < 0.05) with other materials. Wear of all test materials was greater compared to the wear of enamel antagonists. PFM and LD caused the largest and the smallest enamel wear, respectively. CR, LD, and MZr are more resistant than PFM to wear after simulated chewing against enamel.


Subject(s)
Humans , Adolescent , Adult , Young Adult , Zirconium/chemistry , Metal Ceramic Alloys/chemistry , Composite Resins/chemistry , Dental Enamel/chemistry , Dental Porcelain/chemistry , Tooth Wear/etiology , Mastication , Reference Values , Surface Properties , Image Processing, Computer-Assisted , Materials Testing , Analysis of Variance , Statistics, Nonparametric , Dental Polishing/methods , Microscopy/instrumentation
12.
Braz. dent. j ; 29(5): 483-491, Sept.-Oct. 2018. tab, graf
Article in English | LILACS | ID: biblio-974179

ABSTRACT

Abstract It evaluated the effect of aging by Low Temperature Degradation (LTD), executed after post- processing surface treatments (polishing, heat treatment and glazing), on the surface characteristics (micromorphology and roughness) and on the structural stability (phase transformation and mechanical behavior-flexural strength and structural reliability) of a ground yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) ceramic. Discs of Y-TZP (VITA In-Ceram YZ) were manufactured (ISO:6872-2015; 15 mm in diameter and 1.2 ± 0.2 mm in thickness) and randomly assigned into 10 groups according two factors: "aging" in 2 levels (with or without) and "surface treatment" in 5 levels (Ctrl: as-sintered; Gr: grinding with coarse diamond bur; Gr + HT: grinding plus heat treatment; Gr + Pol: grinding plus polishing; Gr + Gl: grinding plus glazing). Roughness (n=30), biaxial flexural test (n=30), phase transformation (n=2), and surface topography (n=2) analyses were performed. Aging led to an intense increase in monoclinic (m) phase content for all the tested conditions, being the as-sintered samples (Ctrl= 65.6%) more susceptible to the t-m phase transformation. Despite of increasing the m-phase content, aging was not detrimental for characteristic strength (except to the grinding condition). There was no significant reduction in the Weibull modulus after surface treatments. Additionally, heat treatment and glazing after grinding led to a decrease in characteristic strength, while polishing presented the highest characteristic strength values. Thus, polishing is mandatory after grinding the Y-TZP ceramic, while performing glazing or heat-treatment alone after grinding lead to the worst mechanical performance.


Resumo Este estudo avaliou o efeito do envelhecimento através da degradação a baixas temperaturas (low temperaturare degradation - LTD) após a realização de tratamentos de superfície pós- sinterização (polimento, tratamento térmico e glaze) nas características superficiais (micromorfologia e rugosidade), e na estabilidade estrutural (transformação de fase e comportamento mecânico - resistência flexural e confiabilidade estrutural) de uma cerâmica de zircônia tetragonal policristalina estabilizada por ítria (Y-TZP) desgastada. Discos de cerâmica Y-TZP (VITA In-Ceram YZ) foram confeccionados (ISO:6872-2015; 15mm de diâmetro e 1,2 ± 0,2mm de espessura) e randomicamente divididos em 10 grupos de acordo com dois fatores: "envelhecimento" (com e sem) e "tratamento de superfície" (Ctrl - sem tratamento; Gr - desgaste com ponta diamantada grossa; Gr + HT - desgaste mais tratamento térmico; Gr + Pol - desgaste mais polimento; Gr + Gl - desgaste mais glazeamento). Foram realizadas as análises de rugosidade (n=30), flexão biaxial (n=30), transformação de fase (n=2) e topografia de superfície (n=2). O envelhecimento levou a um aumento intenso no conteúdo de fase monoclínica (m) em todas as condições testadas, sendo observada uma maior susceptibilidade de transformação de fase t-m nas amostras do grupo controle (Ctrl= 65.6%). Apesar de provocar elevada transformação de fase, o envelhecimento não apresentou efeitos negativos nos desfechos avaliados. Não houve redução significativa do módulo de Weibull após os tratamentos. Além disso, o tratamento térmico e o glaze após desgaste levaram a uma redução da resistência característica, enquanto que o grupo polimento apresentou o mais alto valor de resistência característica. O glaze e o tratamento térmico geraram o pior desempenho mecânico, portanto a realização do polimento após desgaste de uma cerâmica Y-TZP é obrigatória.


Subject(s)
Yttrium/chemistry , Zirconium/chemistry , Dental Materials/chemistry , Dental Polishing/methods , Surface Properties , X-Ray Diffraction , Materials Testing , Microscopy, Electron, Scanning , Microscopy, Atomic Force , Flexural Strength , Hot Temperature
13.
Braz. dent. j ; 29(4): 347-353, July-Aug. 2018. tab, graf
Article in English | LILACS | ID: biblio-974164

ABSTRACT

Abstract The aim of this study was to evaluate the influence of the coefficient of thermal expansion (CTE or α) and glass transition temperature (Tg) of three veneering ceramics used with zirconia frameworks of full-arch fixed prostheses. The generation of residual stresses and linear contraction after the simulation of the cooling process and mechanical loading were measured. The analysis was based on the finite element method in three-dimensional model of a maxillary full-arch fixed prosthesis with zirconia framework (e.max ZirCAD) and veneer by felsdpathic ceramics (GEC - IPS e.max Ceram, GVM - Vita VM9 and GLC - Lava Ceram). The linear contraction simulation was performed by cooling the structures from the Tg of each veneer ceramic at room temperature (25°C). A loading of 100 N on the occlusal region of the first molar was performed. The magnitude of the maximum principal stress (smax) and linear contraction were evaluated. The levels of CTE mismatch between veneering ceramics and framework showed no relevant influence on smax and linear contraction. The Tg values of the veneer ceramic showed to be directly proportional to amount of smax and linear contraction. The GEC presented the highest values of smax and linear contraction. The GVM and GLC did not present significant differences between them. In conclusion, GVM was similar to GLC, while GEC presented differences in relation to other veneer ceramics in terms of residual stress and linear contraction.


Resumo O objetivo neste estudo foi avaliar a influência do coeficiente de expansão térmica (CET) e da temperatura de transição vítrea (Tg) de três cerâmicas feldspáticas utilizadas para o recobrimento da infraestrutura de zircônia em prótese total fixa. A tensão residual e contração linear após a simulação do processo de esfriamento e carga oclusal foram mensuradas. A análise foi efetuada pelo método por elementos finitos num modelo tridimensional de uma prótese total maxilar com infraestrutura em zircônia (e.max ZirCAD) recoberta por três cerâmicas felsdpáticas (GEC - IPS e.max Ceram, GVM - Vita VM9 ou GLC - Lava Ceram). A simulação da contração linear foi realizada pelo esfriamento da estrutura a partir da Tg de cada cerâmica de cobertura até a temperatura ambiente (25 °C). Em seguida, um carregamento de 100 N foi realizado na região oclusal de primeiro molar. A magnitude da tensão máxima principal (smax) e contração linear foram avaliadas. Os níveis de diferença de CTE entre cerâmica de cobertura e infraestrutura não apresentaram influência significante na smax e na contração linear. Os valores da Tg da cerâmica de cobertura foram diretamente proporcionais à quantidade de smax e contração linear. O grupo GEC apresentou os maiores valores de smax e contração linear, enquanto os grupos GVM e GLC com menores valores não apresentaram diferenças significantes entre si. Em conclusão, o grupo GVM foi similar ao GLC, enquanto o grupo GEC apresentou diferenças em relação a outras cerâmicas de cobertura quanto à tensão residual e contração linear.


Subject(s)
Zirconium/chemistry , Ceramics , Dental Stress Analysis , Dental Veneers , Materials Testing , Finite Element Analysis
15.
Braz. oral res. (Online) ; 32: e32, 2018. tab, graf
Article in English | LILACS | ID: biblio-889472

ABSTRACT

Abstract This study aimed to investigate slow crack growth (SCG) behavior of a zirconia ceramic after grinding and simulated aging with low-temperature degradation (LTD). Complementary analysis of hardness, surface topography, crystalline phase transformation, and roughness were also measured. Disc-shaped specimens (15 mm Ø × 1.2 mm thick, n = 42) of a full-contour Y-TZP ceramic (Zirlux FC, Amherst) were manufactured according to ISO:6872-2008, and then divided into: Ctrl - as-sintered condition; Ctrl LTD - as-sintered after aging in autoclave (134°C, 2 bar, 20 h); G - ground with coarse diamond bur (grit size 181 μm); G LTD - ground and aged. The SCG parameters were measured by a dynamic biaxial flexural test, which determines the tensile stress versus stress rate under four different rates: 100, 10, 1 and 0.1 MPa/s. LTD led to m-phase content increase, as well as grinding (m-phase content: Ctrl - 0%; G - 12.3%; G LTD - 59.9%; Ctrl LTD - 81%). Surface topography and roughness analyses showed that grinding created an irregular surface (increased roughness) and aging did not promote any relevant surface change. There was no statistical difference on surface hardness among different conditions. The control group presented the lowest strength values in all tested rates. Regarding SCG, ground conditions were less susceptible to SCG, delaying its occurrence. Aging (LTD) caused an increase in SCG susceptibility for the as-sintered condition (i.e. G < G LTD < Ctrl < Ctrl LTD).


Subject(s)
Cold Temperature , Yttrium/chemistry , Zirconium/chemistry , Analysis of Variance , Dental Stress Analysis , Hardness Tests , Materials Testing , Microscopy, Electron, Scanning , Pliability , Reference Values , Reproducibility of Results , Surface Properties , Tensile Strength , Time Factors , X-Ray Diffraction
16.
Braz. oral res. (Online) ; 32: e34, 2018. tab, graf
Article in English | LILACS | ID: biblio-889480

ABSTRACT

Abstract To evaluate the effect of different surface treatments on the marginal misfit and retentive strength between Y-TZP crowns and an epoxy resin. Forty (40) epoxy resin (G10) abutments (height: 5mm, conicity: 60, finish line: large chamfer) with equal dimensions were milled and included in polyurethane to simulate the periodontal ligament. Next, 40 Y-TZP crowns (thickness: 1mm) were milled (Cerec in Lab) and randomly divided into four groups (n=10) according to the surface treatment: GS(glaze spray), GP(glaze powder/liquid), P(zirconia primer) and RS(tribochemical silica coating). The conditioned surfaces were cemented with dual self-adhesive cement, light cured and submitted to thermomechanical cycling (2x106, 100N, 4Hz, 5°/55°C). Marginal misfit was analyzed by a stereomicroscope and SEM. Retentive strength test was performed (1mm/min) until crown debonding. Glaze layer thickness was also performed to GS and GP groups. Marginal misfit data were analyzed by Kruskal Wallis and Dunn tests; one-way ANOVA and Tukey (5%) analyzed the tensile strength data. The marginal misfit of the GS (48.6±19.9μm) and GP (65.4±42.5μm) were statistically lower than the RS (96±62.9μm) and P (156±113.3μm) (p=0.001). The retentive strength of the GP (470.5±104.1N) and GS (416.8±170.2N) were similar to the P (342.1±109.7N), but statistically higher than those of the RS (208.9±110N). The GS and GP glaze layer was 11.64μm and 9.73μm respectively. Thus, glaze application promoted lower marginal discrepancy and higher retentive strength values than conventional techniques.


Subject(s)
Crowns , Dental Bonding/methods , Dental Marginal Adaptation , Epoxy Resins/chemistry , Glass/chemistry , Yttrium/chemistry , Zirconium/chemistry , Analysis of Variance , Computer-Aided Design , Dental Restoration Failure , Materials Testing , Microscopy, Electron, Scanning , Reference Values , Reproducibility of Results , Statistics, Nonparametric , Surface Properties , Tensile Strength
17.
Braz. oral res. (Online) ; 32: e118, 2018. tab, graf
Article in English | LILACS | ID: biblio-974438

ABSTRACT

Abstract The aim of this study was to evaluate stress distribution in an occlusal veneer according to the restorative material, restoration thickness, and cement layer thickness. A tridimensional model of a human maxillary first molar with an occlusal veneer preparation was constructed using a modeling software of finite element analysis. The model was replicated 9 times to evaluate the factors: restoration thickness (0.6, 1.2, and 1.8 mm) and cement layer thickness (100, 200, and 300 μm). Then, each model received different restorative materials (High Translucency Zirconia - [YZHT], Lithium Disilicate - [LD], Zirconia Reinforced Lithium Silicate - [ZLS], Feldspathic - [F], and Hybrid Ceramic - [HC]), totaling forty-five groups. An axial load (600 N) was applied on the occlusal face for static structural analysis. Solids were considered isotropic, homogeneous, and linearly elastic. Contacts were considered perfectly bonded. Fixation occurred in the dental root and a mechanical static structural analysis was performed. Descriptive statistical analysis and one-way ANOVA (α =10%) were performed for tensile stress peak values in the restoration and cement layer. The difference between groups was compared using the Tukey's test with 10% significance to match the percentage of the mesh convergence test. According to the results, the cement layer thickness did not influence stress distribution in the restoration (p ≥ 0.10). The thicker the restoration, the higher the tensile stress concentration in the restoration. The graphs showed higher stress concentration in the YZHT, followed by LD, F, ZLS, and HC. Also, the restorative material influenced stress concentration on the cement layer, which decreased according to the sequence HC>YZHT>ZLS>LD>F. HC stood out for causing the least stress concentration in the restoration. Cement layer thickness did not interfere in the mechanical performance of the restorations.


Subject(s)
Humans , Ceramics/chemistry , Dental Cements/chemistry , Dental Restoration, Permanent/methods , Dental Veneers , Reference Values , Silicate Cement/chemistry , Tensile Strength , Zirconium/chemistry , Materials Testing , Reproducibility of Results , Analysis of Variance , Dental Prosthesis Design , Resin Cements/chemistry , Dental Restoration Failure , Finite Element Analysis , Dental Porcelain/chemistry , Dental Stress Analysis , Elastic Modulus , Lithium/chemistry
18.
Braz. oral res. (Online) ; 32: e53, 2018. tab, graf
Article in English | LILACS | ID: biblio-952144

ABSTRACT

Abstract This in vitro study evaluated the fatigue strength of different ceramic materials indicated for monolithic restorations. Disc-shaped specimens were made according to ISO 6872 from five different ceramic materials: feldspathic ceramic (FC), polymer-infiltrated ceramic network (PIC), lithium disilicate glass-ceramic (LD), zirconia-reinforced lithium silicate glass-ceramic (ZLS), and high translucent tetragonal zirconia polycrystals doped by yttrium (YZ-HT). After obtaining the mean of each material (n = 5) from monotonic load-to-failure tests, specimens (n = 20) were subjected to fatigue tests (staircase method) using a biaxial flexural setup (piston-on-three-balls), to determine the fatigue strength. The parameters used for fatigue tests were: 100,000 cycles at 10 Hz, initial load of ~ 60% of mean load-to-failure, and step size of 5% of the initial load (specific for each ceramic material). Kruskal-Wallis and Bonferroni's test (α = 0.05) were used to analyze the fatigue strength data. Fatigue strength (MPa) of the materials was statistically different among each other as follows: YZ-HT (370.2 ± 38.7) > LD (175.2 ± 7.5) > ZLS (152.1 ± 7.5) > PIC (81.8 ± 3.9) > FC (50.8 ± 1.9). Thus, it can be concluded that, in terms of fatigue, high translucent polycrystalline zirconia is the best choice for monolithic restorations as it bears the highest load before cracking/fracturing.


Subject(s)
Stress, Mechanical , Ceramics/chemistry , Computer-Aided Design , Dental Restoration Failure , Reference Values , Surface Properties , Tensile Strength , Zirconium/chemistry , Materials Testing , Microscopy, Electron, Scanning , Reproducibility of Results , Pliability , Dental Porcelain/chemistry , Dental Stress Analysis
19.
J. appl. oral sci ; 25(5): 566-574, Sept.-Oct. 2017. tab, graf
Article in English | LILACS, BBO | ID: biblio-893657

ABSTRACT

Abstract Objective: This study evaluated the influence of porcelain (VM9, VITA Zahnfabrik, Germany) thickness on the flexural strength and crack propagation in bilayered zirconia systems (YZ, VITA Zahnfabrik, Germany). Material and Methods: Thirty zirconia bars (20.0x4.0x1.0 mm) and six zirconia blocks (12.0x7.5x1.2 mm) were prepared and veneered with porcelain with different thickness: 1 mm, 2 mm, or 3 mm. The bars of each experimental group (n=10) were subjected to four-point flexural strength testing. In each ceramic block, a Vickers indentation was created under a load of 10 kgf for 10 seconds, for the propagation of cracks. Results: The results of flexural strength were evaluated by One-way ANOVA and Tukey's test, with a significance level of 5%. The factor "thickness of the porcelain" was statistically significant (p=0.001) and the l-mm group presented the highest values of flexural strength. The cracks were predominant among the bending specimens with 1 and 2 mm of porcelain, and catastrophic failures were found in 50% of 3-mm-thick porcelain. After the indentation of blocks, the most severe defects were observed in blocks with 3-mm-thick porcelain. Conclusion: The smallest (1 mm) thickness of porcelain on the zirconia infrastructure presented higher values of flexural strength. Better resistance to defect propagation was observed near the porcelain/ zirconia interface for all groups. Higher flexural strength was found for a thinner porcelain layer in a bilayered zirconia system. The damage caused by a Vickers indentation near and far the interface with the zirconia shows that the stress profiles are different.


Subject(s)
Zirconium/chemistry , Ceramics/chemistry , Dental Porcelain/chemistry , Reference Values , Surface Properties , Tensile Strength , Time Factors , Materials Testing , Reproducibility of Results , Analysis of Variance , Pliability , Microscopy, Confocal , Dental Restoration Failure , Dental Stress Analysis , Hardness Tests , Hot Temperature
20.
Braz. oral res. (Online) ; 31(supl.1): e58, Aug. 2017. tab
Article in English | LILACS | ID: biblio-889454

ABSTRACT

Abstract The evolution of computerized systems for the production of dental restorations associated to the development of novel microstructures for ceramic materials has caused an important change in the clinical workflow for dentists and technicians, as well as in the treatment options offered to patients. New microstructures have also been developed by the industry in order to offer ceramic and composite materials with optimized properties, i.e., good mechanical properties, appropriate wear behavior and acceptable aesthetic characteristics. The objective of this literature review is to discuss the main advantages and disadvantages of the new ceramic systems and processing methods. The manuscript is divided in five parts: I) monolithic zirconia restorations; II) multilayered dental prostheses; III) new glass-ceramics; IV) polymer infiltrated ceramics; and V) novel processing technologies. Dental ceramics and processing technologies have evolved significantly in the past ten years, with most of the evolution being related to new microstructures and CAD-CAM methods. In addition, a trend towards the use of monolithic restorations has changed the way clinicians produce all-ceramic dental prostheses, since the more aesthetic multilayered restorations unfortunately are more prone to chipping or delamination. Composite materials processed via CAD-CAM have become an interesting option, as they have intermediate properties between ceramics and polymers and are more easily milled and polished.


Subject(s)
Ceramics/chemistry , Computer-Aided Design/trends , Dental Materials/chemistry , Zirconium/chemistry , Dental Prosthesis Design/trends , Dental Veneers/trends , Materials Testing , Yttrium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL