ABSTRACT
BACKGROUND: Idiopathic normal pressure hydrocephalus (iNPH) is a clinico-radiological syndrome of elderly individuals likely sustained by different neurodegenerative changes as copathologies. Since iNPH is a potentially reversible condition, assessing neurodegenerative pathologies in vitam through CSF biomarkers and their influence on clinical features and surgical outcome represents crucial steps. METHODS: We measured α-synuclein seeding activity related to Lewy body (LB) pathology by the real-time quaking-induced conversion assay (RT-QuIC) and Alzheimer disease core biomarkers (proteins total-tau, phospho-tau, and amyloid-beta) by immunoassays in the cerebrospinal fluid (CSF) of 293 iNPH patients from two independent cohorts. To compare the prevalence of LB copathology between iNPH participants and a control group representative of the general population, we searched for α-synuclein seeding activity in 89 age-matched individuals who died of Creutzfeldt-Jakob disease (CJD). Finally, in one of the iNPH cohorts, we also measured the CSF levels of neurofilament light chain protein (NfL) and evaluated the association between all CSF biomarkers, baseline clinical features, and surgery outcome at 6 months. RESULTS: Sixty (20.5%) iNPH patients showed α-synuclein seeding activity with no significant difference between cohorts. In contrast, the prevalence observed in CJD was only 6.7% (p = 0.002). Overall, 24.0% of iNPH participants showed an amyloid-positive (A+) status, indicating a brain co-pathology related to Aß deposition. At baseline, in the Italian cohort, α-synuclein RT-QuIC positivity was associated with higher scores on axial and upper limb rigidity (p = 0.003 and p = 0.011, respectively) and lower MMSEc scores (p = 0.003). A+ patients showed lower scores on the MMSEc (p = 0.037) than A- patients. Higher NfL levels were also associated with lower scores on the MMSEc (rho = -0.213; p = 0.021). There were no significant associations between CSF biomarkers and surgical outcome at 6 months (i.e. responders defined by decrease of 1 point on the mRankin scale). CONCLUSIONS: Prevalent LB- and AD-related neurodegenerative pathologies affect a significant proportion of iNPH patients and contribute to cognitive decline (both) and motor impairment (only LB pathology) but do not significantly influence the surgical outcome at 6 months. Their effect on the clinical benefit after surgery over a more extended period remains to be determined.
Subject(s)
Amyloid beta-Peptides , Hydrocephalus, Normal Pressure , Aged , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Humans , Hydrocephalus, Normal Pressure/cerebrospinal fluid , Hydrocephalus, Normal Pressure/epidemiology , Hydrocephalus, Normal Pressure/surgery , Lewy Bodies , Peptide Fragments/cerebrospinal fluid , Prevalence , alpha-Synuclein , tau Proteins/cerebrospinal fluidABSTRACT
PURPOSE: Different studies have reported varying alpha-synuclein values in the cerebrospinal fluid (CSF), serum, and plasma, making determination of the alpha-synuclein cutoff value for Parkinson's disease difficult and rendering identifying the cause of variation essential. METHOD: We searched PubMed from inception to June 2021 and identified 76 eligible studies. Included studies reported data on total, phosphorylated, and oligomeric alpha-synuclein in the CSF, serum, or plasma from individuals with Parkinson's disease and healthy controls. The mean or median alpha-synuclein values from the included studies were summarized and categorized through laboratory assays to visualize potential trends. RESULTS: The enzyme-linked immunosorbent assay (ELISA) is the most common assay used to determine alpha-synuclein concentrations. Less common assays include Luminex, single molecule arrays, electrochemiluminescence, and immunomagnetic reduction (IMR). IMR is a single-antibody and wash-free immunoassay designed for determining the extremely low concentration of bio-molecules. For patients with Parkinson's disease, the median or mean testing values ranged from 60.9 to 55,000 pg/mL in the CSF, 0.446 to 1,777,100 pg/mL in plasma, and 0.0292 to 38,200,000 pg/mL in serum. The antibody selection was diverse between studies. The tendency of distribution was more centralized among studies that used the same kit. Studies adopting specific antibodies or in-house assays contribute to the extreme values. Only a few studies on phosphorylated and oligomeric alpha-synuclein were included. CONCLUSION: The type of assay and antibody selection in the laboratory played major roles in the alpha-synuclein variation. Studies that used the same assay and kit yielded relatively unanimous results. Furthermore, IMR may be a promising assay for plasma and serum alpha-synuclein quantification. A consensus on sample preparation and testing protocol unification is warranted in the future.
Subject(s)
Parkinson Disease , alpha-Synuclein , Biomarkers , Enzyme-Linked Immunosorbent Assay/methods , HumansABSTRACT
Over the last few years data from our group have indicated that α-synuclein is important in development of immune cells as well as potentially erythrocytes and platelets. The latter is important since this protein may work as negative regulator of granule release. Thus, we sought to begin to understand the structure of this protein in platelets. Flow cytometric analysis of this protein using region-specific (N-terminus, central region and C-terminus) monoclonal antibodies was performed. Antibody to the central region gave the strongest shift among all three antibodies, with the C-terminus having intermediate shift and N-terminus minimal shift. Western blotting using the same antibodies showed similar binding of all antibodies to α-synuclein. These results suggest a similar arrangement of this protein in platelets as seen in neurons. Future studies ought to look at the role that each protein region plays in platelets.
Subject(s)
Blood Platelets , alpha-Synuclein , Antibodies, Monoclonal , Blood Platelets/metabolism , Flow Cytometry , Humans , alpha-Synuclein/analysis , alpha-Synuclein/metabolismABSTRACT
BACKGROUND: Objective diagnostic biomarkers are needed to support a clinical diagnosis. OBJECTIVES: To analyze markers in various neurodegenerative disorders to identify diagnostic biomarker candidates for mainly α-synuclein (aSyn)-related disorders (ASRD) in serum and/or cerebrospinal fluid (CSF). METHODS: Upon initial testing of commercially available kits or published protocols for the quantification of the candidate markers, assays for the following were selected: total and phosphorylated aSyn (pS129aSyn), neurofilament light chain (NfL), phosphorylated neurofilament heavy chain (pNfH), tau protein (tau), ubiquitin C-terminal hydrolase L1 (UCHL-1), glial fibrillary acidic protein (GFAP), calcium-binding protein B (S100B), soluble triggering receptor expressed on myeloid cells 2 (sTREM-2), and chitinase-3-like protein 1 (YKL-40). The cohort comprised participants with Parkinson's disease (PD, n = 151), multiple system atrophy (MSA, n = 17), dementia with Lewy bodies (DLB, n = 45), tau protein-related neurodegenerative disorders (n = 80, comprising patients with progressive supranuclear palsy (PSP, n = 38), corticobasal syndrome (CBS, n = 16), Alzheimer's disease (AD, n = 11), and frontotemporal degeneration/amyotrophic lateral sclerosis (FTD/ALS, n = 15), as well as healthy controls (HC, n = 20). Receiver operating curves (ROC) with area under the curves (AUC) are given for each marker. RESULTS: CSF total aSyn was decreased. NfL, pNfH, UCHL-1, GFAP, S100B, and sTREM-2 were increased in patients with neurodegenerative disease versus HC (P < 0.05). As expected, some of the markers were highest in AD (i.e., UCHL-1, GFAP, S100B, sTREM-2, YKL-40). Within ASRD, CSF NfL levels were higher in MSA than PD and DLB (P < 0.05). Comparing PD to HC, interesting serum markers were S100B (AUC: 0.86), sTREM2 (AUC: 0.87), and NfL (AUC: 0.78). CSF S100B and serum GFAP were highest in DLB. CONCLUSIONS: Levels of most marker candidates tested in serum and CSF significantly differed between disease groups and HC. In the stratification of PD versus other tau- or aSyn-related conditions, CSF NfL levels best discriminated PD and MSA. CSF S100B and serum GFAP best discriminated PD and DLB. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Multiple System Atrophy , Biomarkers/cerebrospinal fluid , Humans , Multiple System Atrophy/diagnosis , alpha-Synuclein/cerebrospinal fluid , tau Proteins/cerebrospinal fluidABSTRACT
The budding yeast Saccharomyces cerevisiae is a model organism amenable both to genetic analysis and cell biology. Due to these advantages, yeast has provided platforms to examine the properties of pathogenic proteins involved in human diseases. The methods used to examine the cytotoxicity and intracellular localization of α-Synuclein, a human neuronal protein implicated in Parkinson's disease, using yeast have been described herein. These methods are readily accessible to researchers or graduate students unfamiliar with experiments using yeast and applicable to larger scale analyses, such as high-throughput genetic and chemical screenings.
Subject(s)
Biological Assay/methods , Saccharomyces cerevisiae/metabolism , Saccharomycetales/metabolism , alpha-Synuclein/metabolism , Humans , Microscopy, Fluorescence/methods , Parkinson Disease/metabolismABSTRACT
Electrostatic interactions play crucial roles in protein function. Measuring pKa value perturbations upon complex formation or self-assembly of e.g. amyloid fibrils gives valuable information about the effect of electrostatic interactions in those processes. Site-specific pKa value determination by solution NMR spectroscopy is challenged by the high molecular weight of amyloid fibrils. Here we report a pH increase during fibril formation of α-synuclein, observed using three complementary experimental methods: pH electrode measurements in water; colorimetric changes of a fluorescent indicator; and chemical shift changes for histidine residues using solution state NMR spectroscopy. A significant pH increase was detected during fibril formation in water, on average by 0.9 pH units from 5.6 to 6.5, showing that protons are taken up during fibril formation. The pH upshift was used to calculate the average change in the apparent pKaave value of the acidic residues, which was found to increase by at least 1.1 unit due to fibril formation. Metropolis Monte Carlo simulations were performed on a comparable system that also showed a proton uptake due to fibril formation. Fibril formation moreover leads to a significant change in proton binding capacitance. Parallel studies of a mutant with five charge deletions in the C-terminal tail revealed a smaller pH increase due to fibril formation, and a smaller change (0.5 units on average) in the apparent pKaave values of the acidic residues. We conclude that the proton uptake during the fibril formation is connected to the high density of acidic residues in the C-terminal tail of α-synuclein.
Subject(s)
Amyloid/chemical synthesis , alpha-Synuclein/chemistry , Amyloid/chemistry , Electrodes , Humans , Hydrogen-Ion Concentration , Molecular Dynamics Simulation , Monte Carlo Method , Static ElectricityABSTRACT
α-Synuclein (αS) is a presynaptic protein that binds to cell membranes and is linked to Parkinson's disease (PD). Binding of αS to membranes is a likely first step in the molecular pathophysiology of PD. The αS molecule can adopt multiple conformations, being largely disordered in water, adopting a ß-sheet conformation when present in amyloid fibrils, and forming a dynamic multiplicity of α-helical conformations when bound to lipid bilayers and related membrane-mimetic surfaces. Multiscale molecular dynamics simulations in conjunction with nuclear magnetic resonance (NMR) and cross-linking mass spectrometry (XLMS) measurements are used to explore the interactions of αS with an anionic lipid bilayer. The simulations and NMR measurements together reveal a break in the helical structure of the central non-amyloid-ß component (NAC) region of αS in the vicinity of residues 65-70, which may facilitate subsequent oligomer formation. Coarse-grained simulations of αS starting from the structure of αS when bound to a detergent micelle reveal the overall pattern of protein contacts to anionic lipid bilayers, while subsequent all-atom simulations provide details of conformational changes upon membrane binding. In particular, simulations and NMR data for liposome-bound αS indicate incipient ß-strand formation in the NAC region, which is supported by intramolecular contacts seen via XLMS and simulations. Markov state models based on the all-atom simulations suggest a mechanism of conformational change of membrane-bound αS via a dynamic helix break in the region of residue 65 in the NAC region. The emergent dynamic model of membrane-interacting αS advances our understanding of the mechanism of PD, potentially aiding the design of novel therapeutic approaches.
Subject(s)
Molecular Dynamics Simulation , alpha-Synuclein , Magnetic Resonance Spectroscopy , Protein Binding , Protein Structure, Secondary , alpha-Synuclein/metabolismABSTRACT
Aside from the classical motor symptoms, Parkinson's disease also has various non-classical symptoms. Interestingly, orexin neurons, involved in the regulation of exploratory locomotion, spontaneous physical activity, and energy expenditure, are affected in Parkinson's. In this study, we hypothesized that Parkinson's-disease-associated pathology affects orexin neurons and therefore impairs functions they regulate. To test this, we used a transgenic animal model of Parkinson's, the A53T mouse. We measured body composition, exploratory locomotion, spontaneous physical activity, and energy expenditure. Further, we assessed alpha-synuclein accumulation, inflammation, and astrogliosis. Finally, we hypothesized that chemogenetic inhibition of orexin neurons would ameliorate observed impairments in the A53T mice. We showed that aging in A53T mice was accompanied by reductions in fat mass and increases in exploratory locomotion, spontaneous physical activity, and energy expenditure. We detected the presence of alpha-synuclein accumulations in orexin neurons, increased astrogliosis, and microglial activation. Moreover, loss of inhibitory pre-synaptic terminals and a reduced number of orexin cells were observed in A53T mice. As hypothesized, this chemogenetic intervention mitigated the behavioral disturbances induced by Parkinson's disease pathology. This study implicates the involvement of orexin in early Parkinson's-disease-associated impairment of hypothalamic-regulated physiological functions and highlights the importance of orexin neurons in Parkinson's disease symptomology.
Subject(s)
Disease Models, Animal , Energy Metabolism/genetics , Motor Activity/genetics , Neurons/metabolism , Orexins/genetics , Parkinson Disease/genetics , alpha-Synuclein/genetics , Animals , Body Composition/genetics , Gliosis/genetics , Gliosis/physiopathology , Humans , Male , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/physiology , Orexins/metabolism , Parkinson Disease/metabolism , Parkinson Disease/physiopathology , alpha-Synuclein/metabolismABSTRACT
Lysosomal dysfunction is an emerging feature in the pathology of Parkinson's disease and Dementia with Lewy bodies. Mutations in the GBA gene, encoding the enzyme Glucocerebrosidase (GCase), have been identified as a genetic risk factor for these synucleinopathies. As a result, there has been a growing interest in the involvement of GCase in these diseases. This GCase activity assay is based on the catalytic hydrolysis of 4-methylumbelliferyl ß-D-glucopyranoside that releases the highly fluorescent 4-methylumbelliferyl (4-MU). The final assay protocol was tested for the following parameters: Lower limit of quantification (LLOQ), precision, parallelism, linearity, spike recovery, number of freeze-thaw events, and sample handling stability. The GCase activity assay is within acceptable criteria for parallelism, precision and spike recovery. The LLOQ of this assay corresponds to an enzymatic activity of generating 0.26 pmol 4-MU/min/ml. The enzymatic activity was stable when samples were processed and frozen at - 80 °C within 4 h after the lumbar puncture procedure. Repetitive freeze-thaw events significantly decreased enzyme activity. We present the validation of an optimized in vitro GCase activity assay, based on commercially available components, to quantify its enzymatic activity in human cerebrospinal fluid and the assessment of preanalytical factors.
Subject(s)
Glucosylceramidase/cerebrospinal fluid , Lewy Bodies/enzymology , Parkinson Disease/cerebrospinal fluid , alpha-Synuclein/genetics , Fluorometry/methods , Glucosylceramidase/genetics , Humans , In Vitro Techniques , Lewy Bodies/pathology , Lysosomes/genetics , Lysosomes/pathology , Mutation/genetics , Parkinson Disease/diagnosis , Parkinson Disease/pathology , Risk Factors , alpha-Synuclein/deficiencyABSTRACT
Purpose: Synucleinopathies such as multiple system atrophy (MSA) and Parkinson's disease are associated with a variety of visual symptoms. Functional and morphological retinal aberrations are therefore supposed to be valuable biomarkers for these neurodegenerative diseases. This study examined the retinal morphology and functionality resulting from human α-synuclein (α-Syn) overexpression in the transgenic Plp-α-Syn mouse model. Methods: Immunohistochemistry on retinal sections and whole-mounts was performed on 8- to 11-week-old and 12-month-old Plp-α-Syn mice and C57BL/6N controls. Quantitative RT-PCR experiments were performed to study the expression of endogenous and human α-Syn and tyrosine hydroxylase (TH). We confirmed the presence of human α-Syn in the retina in western blot analyses. Multi-electrode array (MEA) analyses from light-stimulated whole-mounted retinas were used to investigate their functionality. Results: Biochemical and immunohistochemical analyses showed human α-Syn in the retina of Plp-α-Syn mice. We found distinct staining in different retinal cell layers, most abundantly in rod bipolar cells of the peripheral retina. In the periphery, we also observed a trend toward a decline in the number of retinal ganglion cells. The number of TH+ neurons was unaffected in this human α-Syn overexpression model. MEA recordings showed that Plp-α-Syn retinas were functional but exhibited mild alterations in dim light conditions. Conclusions: Together, these findings implicate an impairment of retinal neurons in the Plp-α-Syn mouse. The phenotype partly relates to retinal deficits reported in MSA patients. We further propose the suitability of the Plp-α-Syn retina as a biological model to study synuclein-mediated mechanisms.
Subject(s)
Disease Models, Animal , Myelin Proteolipid Protein/metabolism , Retinal Diseases/metabolism , Retinal Neurons/metabolism , Synucleinopathies/metabolism , alpha-Synuclein/metabolism , Animals , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Electroretinography , Female , Glial Fibrillary Acidic Protein/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/metabolism , Microscopy, Confocal , Optic Nerve/metabolism , Photic Stimulation , Real-Time Polymerase Chain Reaction , Retina/metabolism , Retina/radiation effects , Retinal Diseases/pathology , Retinal Neurons/pathology , Synucleinopathies/pathologyABSTRACT
BACKGROUND: α-Synuclein (α-syn) is a major component of Lewy bodies, a pathologic marker of Parkinson's disease (PD) in post-mortem studies. The use of α-syn as a practical PD biomarker has been investigated by numerous researchers. However, reports of differences in α-syn levels in biofluids, such as cerebrospinal fluid, plasma, and saliva, between PD patients and controls are inconsistent. Recently, the measurement of α-syn oligomer levels has emerged as a novel approach to diagnose PD. OBJECTIVE: Lysates and culture media from two different types of dopaminergic neuronal cells or urine samples from 11 non-PD and 21 PD patients were collected and analyzed. METHODS: We developed and performed an enzyme-linked immuno-absorbent assay (ELISA) to detect various oligomeric α-syn using distinct pairs of antibodies. RESULTS: We validated our ELISA using rotenone-induced alterations of α-syn levels in human dopaminergic neurons. Total urinary α-syn levels, measured using our ELISA method, showed no difference between PD and non-PD individuals, but a higher level of α-syn oligomer recognized by MJFR-14-6-5-2 in PD urine samples was observed. Levels of distinct oligomeric α-syn detected by ASyO5 were lower in PD urine samples. Three different α-syn ELISA results were analyzed with respect to the severity of PD, but only the correlation between total α-syn levels and PD index was significant. CONCLUSION: Our findings suggest that detection of distinct oligomeric formations of α-syn and measurement of their levels in urine might be feasible for use in PD diagnostics.
Subject(s)
Biomarkers/blood , Parkinson Disease/diagnosis , Parkinson Disease/metabolism , alpha-Synuclein/blood , Humans , Lewy Body Disease/diagnosis , Lewy Body Disease/metabolism , Saliva/metabolism , Sensitivity and Specificity , alpha-Synuclein/cerebrospinal fluidABSTRACT
Synucleinopathies are conditions that remain with no available effective treatments thus far. Immunotherapy is a possible path to fight against such pathologies by inducing antibodies against alpha-synuclein (α-Syn), which could induce the clearance of its pathologic form. Looking to develop a new low-cost, effective vaccine against synucleinopathies; we have designed a chimeric plant-made antigen comprising the subunit B of the enterotoxin from enterotoxigenic E. coli and three B cell epitopes from α-Syn, which is named LTB-Syn. In the present study, LTB-Syn was produced in carrot cell lines as appropriate platform for the formulation of oral vaccines not requiring purification. The development of transgenic carrot cell lines took 8 months and the LTB-Syn yield reached 2.3 µg/g dry biomass. The antigen encapsulated in lyophilized carrot cells was highly stable at room temperature over a six-month period and upon heating at 50 °C for 2 h. Moreover, LTB-Syn was able to prime immune responses that, in combination with parenteral boosting using an OVA-Syn conjugate, induced significant humoral resposes in mice. Thus the carrot-made oral LTB-Syn vaccine is a promising candidate that deserves further analyses to advance in its preclinical evaluation.
Subject(s)
Daucus carota/chemistry , Plants, Genetically Modified/metabolism , Synucleinopathies/prevention & control , Vaccines/immunology , alpha-Synuclein/immunology , Animals , Biomass , Cell Line , Daucus carota/genetics , Disease Models, Animal , Enterotoxins/immunology , Epitopes, B-Lymphocyte , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Female , Immunogenicity, Vaccine/immunology , Immunotherapy , Mice , Mice, Inbred BALB C , Plants, Genetically Modified/genetics , Synucleinopathies/immunology , Vaccines/economics , alpha-Synuclein/geneticsABSTRACT
Many fundamental calcium-dependent physiological processes are triggered by high local calcium levels that are established around the sites of calcium entry into the cell (channels). They are dubbed as calcium nanodomains but their exact profiles are still elusive. The concept of calcium nanodomains stems from a linear model of calcium diffusion and is only valid when calcium increases are smaller than the concentration of cytoplasmic buffers. Recent data indicates that much higher calcium levels cause buffer saturation. Therefore, I sought explicit solutions of a nonlinear reaction-diffusion model and found a dichotomous solution. For small fluxes, the steady state calcium profile is quasi-exponential, and when calcium exceeds buffer concentration a spatial periodicity appears. Analytical results are supported by Monte-Carlo simulations. I also imaged 1D- and radial calcium distributions around single α-synuclein channels in cell-free conditions. Measured Ca profiles are consistent with theoretical predictions. I propose that the periodic calcium patterns may well arise under certain conditions and their specific functional role has to be established.
Subject(s)
Calcium Channels/metabolism , Calcium Signaling , Calcium/metabolism , Models, Theoretical , alpha-Synuclein/metabolism , Animals , Mice , Monte Carlo MethodABSTRACT
Intrinsically disordered proteins often play an important role in protein aggregation. However, it is challenging to determine the structures and interactions that drive the early stages of aggregation because they are transient and obscured in a heterogeneous mixture of disordered states. Even computational methods are limited because the lack of ordered structure makes it difficult to ensure that the relevant conformations are sampled. We address these challenges by integrating atomistic simulations with high-resolution single-molecule measurements reported previously, using the measurements to help discern which parts of the disordered ensemble of structures in the simulations are most probable while using the simulations to identify residues and interactions that are important for oligomer stability. This approach was applied to α-synuclein, an intrinsically disordered protein that aggregates in the context of Parkinson's disease. We simulated single-molecule pulling experiments on dimers, the minimal oligomer, and compared them to force spectroscopy measurements. Force-extension curves were simulated starting from a set of 66 structures with substantial structured content selected from the ensemble of dimer structures generated at zero force via Monte Carlo simulations. The pattern of contour length changes as the structures unfolded through intermediate states was compared to the results from optical trapping measurements on the same dimer to discern likely structures occurring in the measurements. Simulated pulling curves were generally consistent with experimental data but with a larger number of transient intermediates. We identified an ensemble of ß-rich dimer structures consistent with the experimental data from which dimer interfaces could be deduced. These results suggest specific druggable targets in the structural motifs of α-synuclein that may help prevent the earliest steps of oligomerization.
Subject(s)
Molecular Dynamics Simulation , Protein Aggregates , Single Molecule Imaging , alpha-Synuclein/chemistry , Biomechanical Phenomena , Monte Carlo Method , Protein Multimerization , Protein Structure, SecondaryABSTRACT
INTRODUCTION: Parkinson's disease is the second most common neurodegenerative disease. Lifestyle, environmental effects and several genetic factors have been proposed to contribute to its development. Though the majority of PD cases do not have a family history of disease, genetic alterations are proposed to be present in 60 percent of the more common sporadic cases. OBJECTIVE: The aim of this study is to evaluate the frequency of PD related specific risk variants of LRRK2, MAPT, SNCA and PARK10 genes in the Hungarian population. Out of the ten investigated polymorphisms three are proposed to have protective effect and seven are putative risk factors. METHODS: For genotyping, TaqMan allelic discrimination and restriction fragment length polymorphism method was used. LRRK2 mutations were investigated among 124 sporadic PD patients and 128 healthy controls. MAPT and SNCA variant frequencies were evaluated in a group of 123 patients and 122 controls, while PARK10 variant was studied in groups of 121 patients and 113 controls. RESULTS: No significant difference could be detected in the frequencies of the investigated MAPT and PARK10 variants between the studied Hungarian PD cases and controls. The minor allele of the risk factor S1647T LRRK2 variant was found to be more frequent among healthy male individuals compared to patients. Moreover, in the frequency of one of the investigated SNCA variant a significant intergroup difference was detected. The minor allele (A) of rs356186 is proposed to be protective against developing the disease. In accord with data obtained in other populations, the AA genotype was significantly more frequent among Hungarian healthy controls compared to patients. Similarly, a significant difference in genotype distribution was also found in comparison of patients with late onset disease to healthy controls, which was due to the higher frequency of AG genotype among patients. CONCLUSION: The frequencies of different gene variants show great differences in populations. Assessment of the frequency of variants of PD related genes variants is important in order to uncover the pathomechanisms underlying the disease, and to identify potential therapeutic targets. This is the first comprehensive study focusing on these genetic variants in the population of East-Central European region. Our results extend the knowledge on the world wide occurrence of these polymorphisms by demonstrating the occurrence of specific alleles and absence of others in Hungarian PD patients.
Subject(s)
Genetic Predisposition to Disease , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Parkinson Disease/genetics , alpha-Synuclein/genetics , tau Proteins/genetics , Adult , Aged , Alleles , Female , Gene Frequency , Genotype , Humans , Hungary , Male , Middle Aged , Polymorphism, Single NucleotideABSTRACT
α-synuclein fibrillar polymorphs, Tau and Aß 1-42 fibrillar assemblies have been shown to propagate, amplify and trigger the formation of protein deposits reminiscent of those present within the central nervous system of patients developing synucleinopathies, tauopathies and amyloid plaques after injection intracerebrally, intramuscularly, intraperitoneally or within the blood stream of model animals. They are thus hazardous and there is need for decontamination and inactivation procedures for laboratory surfaces and non-disposable material. We assessed the effectiveness of different reagents to clean and disassemble potentially pathogenic assemblies adsorbed on non-disposable materials in laboratories. We show that commercial detergents and SDS are way more suited to detach α-synuclein fibrillar polymorphs, Tau and Aß 1-42 fibrillar assemblies from contaminated surfaces and disassemble the fibrils than methods designed to decrease PrP prion infectivity. Our observations reveal that the choice of the most adapted cleaning procedure for one given protein assembly or fibrillar polymorph should integrate detergent's cleaning efficiency, material compatibility and capacity to dismantle assemblies. We provide an integrated representation where desorption and neutralization efficacy and surface compatibility are combined to facilitate the choice of the most adapted decontamination procedure. This representation, together with good laboratory practices, contributes to reducing potential health hazards associated to manipulating protein assemblies with prion-like properties.
Subject(s)
Amyloid beta-Peptides/analysis , Decontamination/methods , alpha-Synuclein/analysis , tau Proteins/analysis , Amyloid beta-Peptides/chemistry , Detergents , Laboratories , Safety Management/methods , Surface Properties , alpha-Synuclein/chemistry , tau Proteins/chemistryABSTRACT
The single-nucleotide polymorphism rs356219 in the α-synuclein (SNCA) gene has been shown to significantly contribute to an earlier age at onset of Parkinson's disease (PD), and regulates SNCA expression in PD brain regions, blood, and plasma. Here, we used multimodal magnetic resonance imaging (MRI) to study healthy adults with and without the rs356219 risk genotype. Motor and cognitive tests were administered, and all participants underwent functional and structural MRI. Imaging analyses included (1) task-based functional MRI; (2) task-based functional connectivity; (3) free-water diffusion MRI of the substantia nigra; (4) voxel-based morphometry; and (5) surface-based morphometry. There were no differences between the 2 groups in motor and cognitive performance, or brain structure. However, carrying a PD risk variant was associated with reduced functional activity in the posterior putamen and primary motor cortex. Moreover, the posterior putamen had reduced functional connectivity with the motor cortex during motor control in those with a risk genotype compared to those without. These findings point to functional abnormalities in the striatocortical circuit of rs356219 risk genotype carriers.