Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add filters








Year range
1.
Nutrition Research and Practice ; : 20-28, 2018.
Article in English | WPRIM | ID: wpr-741687

ABSTRACT

BACKGROUND/OBJECTIVES: Perilla frutescens (L.) Britton var. (PF) sprout is a plant of the labiate family. We have previously reported the protective effects of PF sprout extract on cytokine-induced β-cell damage. However, the mechanism of action of the PF sprout extract in type 2 diabetes (T2DM) has not been investigated. The present study was designed to study the effects of PF sprout extract and signaling mechanisms in the T2DM mice model using C57BL/KsJ-db/db (db/db) mice. MATERIALS/METHODS: Male db/db mice were orally administered PF sprout extract (100, 300, and 1,000 mg/kg of body weight) or rosiglitazone (RGZ, positive drug, 1 mg/kg of body weight) for 4 weeks. Signaling mechanisms were analyzed using liver tissues and HepG2 cells. RESULTS: The PF sprout extract (300 and 1,000 mg/kg) significantly reduced the fasting blood glucose, serum insulin, triglyceride and total cholesterol levels in db/db mice. PF sprout extract also significantly improved glucose intolerance and insulin sensitivity, decreased hepatic gluconeogenic protein expression, and ameliorated histological alterations of the pancreas and liver. Levels of phosphorylated AMP-activated protein kinase (AMPK) protein expression also increased in the liver after treatment with the extract. In addition, an increase in the phosphorylation of AMPK and decrease in the phosphoenolpyruvate carboxykinase and glucose 6-phosphatase proteins in HepG2 cells were also observed. CONCLUSIONS: Our results sugges that PF sprout displays beneficial effects in the prevention and treatment of type 2 diabetes via modulation of the AMPK pathway and inhibition of gluconeogenesis in the liver.


Subject(s)
Animals , Humans , Male , Mice , AMP-Activated Protein Kinases , Blood Glucose , Cholesterol , Diabetes Mellitus , Fasting , Gluconeogenesis , Glucose Intolerance , Glucose-6-Phosphatase , Hep G2 Cells , Insulin , Insulin Resistance , Liver , Pancreas , Perilla frutescens , Perilla , Phosphoenolpyruvate , Phosphorylation , Plants , Triglycerides
2.
Natural Product Sciences ; : 259-262, 2016.
Article in English | WPRIM | ID: wpr-146019

ABSTRACT

The content analysis of fatty acids in Perilla cultivars and commercial oils is conducted through gas chromatography with a flame ionization detector. Results show that Perilla cultivars, such as Deulsaem and Daesil, contain high amounts of α-linolenic acid (262.22 and 261.97 mg/g, respectively). Among commercial oils, Perilla oil contains a higher amount of α-linolenic acid (515.20 mg/g). Accordingly, α-linolenic acid is a major fatty acid of Perilla cultivars and oil. Therefore, Perilla cultivars could be used as a food supplement for nutritional and pharmaceutical purposes.


Subject(s)
Chromatography, Gas , Dietary Supplements , Fatty Acids , Flame Ionization , Industrial Oils , Perilla
3.
Nutrition Research and Practice ; : 274-281, 2016.
Article in English | WPRIM | ID: wpr-138393

ABSTRACT

BACKGROUND/OBJECTIVES: The accumulation of amyloid-β (Aβ) in the brain is a hallmark of Alzheimer's disease (AD) and plays a key role in cognitive dysfunction. Perilla frutescens var. japonica extract (PFE) and its major compound, rosmarinic acid (RA), have shown antioxidant and anti-inflammatory activities. We investigated whether administration of PFE and RA contributes to cognitive improvement in an Aβ25-35-injected mouse model. MATERIALS/METHODS: Male ICR mice were intracerebroventricularly injected with aggregated Aβ25-35 to induce AD. Aβ25-35-injected mice were fed PFE (50 mg/kg/day) or RA (0.25 mg/kg/day) for 14 days and examined for learning and memory ability through the T-maze, object recognition, and Morris water maze test. RESULTS: Our present study demonstrated that PFE and RA administration significantly enhanced cognition function and object discrimination, which were impaired by Aβ25-35, in the T-maze and object recognition tests, respectively. In addition, oral administration of PFE and RA decreased the time to reach the platform and increased the number of crossings over the removed platform when compared with the Aβ25-35-induced control group in the Morris water maze test. Furthermore, PFE and RA significantly decreased the levels of nitric oxide (NO) and malondialdehyde (MDA) in the brain, kidney, and liver. In particular, PFE markedly attenuated oxidative stress by inhibiting production of NO and MDA in the Aβ25-35-injected mouse brain. CONCLUSIONS: These results suggest that PFE and its active compound RA have beneficial effects on cognitive improvement and may help prevent AD induced by Aβ.


Subject(s)
Animals , Humans , Male , Mice , Administration, Oral , Alzheimer Disease , Brain , Cognition , Discrimination, Psychological , Kidney , Learning , Liver , Malondialdehyde , Memory , Mice, Inbred ICR , Nitric Oxide , Oxidative Stress , Perilla frutescens , Perilla , Water
4.
Nutrition Research and Practice ; : 274-281, 2016.
Article in English | WPRIM | ID: wpr-138392

ABSTRACT

BACKGROUND/OBJECTIVES: The accumulation of amyloid-β (Aβ) in the brain is a hallmark of Alzheimer's disease (AD) and plays a key role in cognitive dysfunction. Perilla frutescens var. japonica extract (PFE) and its major compound, rosmarinic acid (RA), have shown antioxidant and anti-inflammatory activities. We investigated whether administration of PFE and RA contributes to cognitive improvement in an Aβ25-35-injected mouse model. MATERIALS/METHODS: Male ICR mice were intracerebroventricularly injected with aggregated Aβ25-35 to induce AD. Aβ25-35-injected mice were fed PFE (50 mg/kg/day) or RA (0.25 mg/kg/day) for 14 days and examined for learning and memory ability through the T-maze, object recognition, and Morris water maze test. RESULTS: Our present study demonstrated that PFE and RA administration significantly enhanced cognition function and object discrimination, which were impaired by Aβ25-35, in the T-maze and object recognition tests, respectively. In addition, oral administration of PFE and RA decreased the time to reach the platform and increased the number of crossings over the removed platform when compared with the Aβ25-35-induced control group in the Morris water maze test. Furthermore, PFE and RA significantly decreased the levels of nitric oxide (NO) and malondialdehyde (MDA) in the brain, kidney, and liver. In particular, PFE markedly attenuated oxidative stress by inhibiting production of NO and MDA in the Aβ25-35-injected mouse brain. CONCLUSIONS: These results suggest that PFE and its active compound RA have beneficial effects on cognitive improvement and may help prevent AD induced by Aβ.


Subject(s)
Animals , Humans , Male , Mice , Administration, Oral , Alzheimer Disease , Brain , Cognition , Discrimination, Psychological , Kidney , Learning , Liver , Malondialdehyde , Memory , Mice, Inbred ICR , Nitric Oxide , Oxidative Stress , Perilla frutescens , Perilla , Water
5.
Biomolecules & Therapeutics ; : 338-345, 2016.
Article in English | WPRIM | ID: wpr-51938

ABSTRACT

Neurodegenerative diseases are often associated with oxidative damage in neuronal cells. This study was conducted to investigate the neuro-protective effect of methanolic (MeOH) extract of Perilla frutescens var. japonica and its one of the major compounds, rosmarinic acid, under oxidative stress induced by hydrogen peroxide (H2O2) in C6 glial cells. Exposure of C6 glial cells to H2O2 enhanced oxidative damage as measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and thiobarbituric acid-reactive substance assays. The MeOH extract and rosmarinic acid prevented oxidative stress by increasing cell viability and inhibiting cellular lipid peroxidation. In addition, the MeOH extract and rosmarinic acid reduced H2O2-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the transcriptional level. Moreover, iNOS and COX-2 protein expression was down-regulated in H2O2-indcued C6 glial cells treated with the MeOH extract and rosmarinic acid. These findings suggest that P. frutescens var. japonica and rosmarinic acid could prevent the progression of neurodegenerative diseases through attenuation of neuronal oxidative stress.


Subject(s)
Cell Survival , Cyclooxygenase 2 , Hydrogen Peroxide , Lipid Peroxidation , Methanol , Neurodegenerative Diseases , Neuroglia , Neurons , Nitric Oxide Synthase Type II , Oxidative Stress , Perilla frutescens , Perilla
6.
Nutrition Research and Practice ; : 11-16, 2015.
Article in English | WPRIM | ID: wpr-105460

ABSTRACT

BACKGROUND/OBJECTIVES: Perilla frutescens Britton leaves are a commonly consumed vegetable in different Asian countries including Korea. Cancer is a major cause of human death worldwide. The aim of the current study was to investigate the inhibitory effects of ethanol extract of perilla leaf (PLE) against important characteristics of cancer cells, including unrestricted growth, resisted apoptosis, and activated metastasis, using human cancer cells. MATERIALS/METHODS: Two human cancer cell lines were used in this study, HCT116 colorectal carcinoma cells and H1299 non-small cell lung carcinoma cells. Assays using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide were performed for measurement of cell growth. Soft agar and wound healing assays were performed to determine colony formation and cell migration, respectively. Nuclear staining and cell cycle analysis were performed for assessment of apoptosis. Fibronectin-coated plates were used to determine cell adhesion. RESULTS: Treatment of HCT116 and H1299 cells with PLE resulted in dose-dependent inhibition of growth by 52-92% (at the concentrations of 87.5, 175, and 350 microg/ml) and completely abolished the colony formation in soft agar (at the concentration of 350 microg/ml). Treatment with PLE at the 350 microg/ml concentration resulted in change of the nucleus morphology and significantly increased sub-G1 cell population in both cells, indicating its apoptosis-inducing activity. PLE at the concentration range of 87.5 to 350 microg/ml was also effective in inhibiting the migration of H1299 cells (by 52-58%) and adhesion of both HCT116 and H1299 cells (by 25-46%). CONCLUSIONS: These results indicate that PLE exerts anti-cancer activities against colon and lung cancers in vitro. Further studies are needed in order to determine whether similar effects are reproduced in vivo.


Subject(s)
Humans , Agar , Apoptosis , Asian People , Cell Adhesion , Cell Cycle , Cell Line , Cell Movement , Colon , Colorectal Neoplasms , Ethanol , Korea , Lung , Lung Neoplasms , Neoplasm Metastasis , Perilla , Perilla frutescens , Vegetables , Wound Healing
7.
Biomolecules & Therapeutics ; : 62-67, 2014.
Article in English | WPRIM | ID: wpr-138509

ABSTRACT

This study was designed to find some potential natural products and/or constituents inhibiting proinflammatory cytokine generation in lung inflammation, since cytokines such as tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) are pivotal for provoking airway inflammation. In our preliminary screening procedure, the 70% ethanol extract of the leaves of Perilla frutescens (PFE) was found to clearly inhibit TNF-alpha production in the lung at 100 mg/kg, after intranasal lipopolysaccharide treatment of mice. Based on this result, ten constituents including phenylpropanoids (allyltetramethoxybenzene, caffeic acid, dillapiole, elemicin, myristicin, nothoapiole, rosmarinic acid methyl ester, rosmarinic acid) and monoterpenes (perilla aldehyde and perilla ketone) were successfully isolated from the extract. Among them, elemicin and myristicin were found for the first time to concentration-dependently inhibit IL-1beta-treated IL-6 production from lung alveolar epithelial cells (A549) at concentrations of 10-100 microM. These findings suggest that the phenylpropanoids including elemicin and myristicin have the potential to be new inhibitory agents against lung inflammation and they may contribute, at least in part, to the inhibitory activity of PFE on the lung inflammatory response.


Subject(s)
Animals , Mice , Biological Products , Bronchitis , Cytokines , Epithelial Cells , Ethanol , Inflammation , Interleukin-6 , Lung , Mass Screening , Monoterpenes , Perilla , Perilla frutescens , Pneumonia , Tumor Necrosis Factor-alpha
8.
Biomolecules & Therapeutics ; : 62-67, 2014.
Article in English | WPRIM | ID: wpr-138508

ABSTRACT

This study was designed to find some potential natural products and/or constituents inhibiting proinflammatory cytokine generation in lung inflammation, since cytokines such as tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) are pivotal for provoking airway inflammation. In our preliminary screening procedure, the 70% ethanol extract of the leaves of Perilla frutescens (PFE) was found to clearly inhibit TNF-alpha production in the lung at 100 mg/kg, after intranasal lipopolysaccharide treatment of mice. Based on this result, ten constituents including phenylpropanoids (allyltetramethoxybenzene, caffeic acid, dillapiole, elemicin, myristicin, nothoapiole, rosmarinic acid methyl ester, rosmarinic acid) and monoterpenes (perilla aldehyde and perilla ketone) were successfully isolated from the extract. Among them, elemicin and myristicin were found for the first time to concentration-dependently inhibit IL-1beta-treated IL-6 production from lung alveolar epithelial cells (A549) at concentrations of 10-100 microM. These findings suggest that the phenylpropanoids including elemicin and myristicin have the potential to be new inhibitory agents against lung inflammation and they may contribute, at least in part, to the inhibitory activity of PFE on the lung inflammatory response.


Subject(s)
Animals , Mice , Biological Products , Bronchitis , Cytokines , Epithelial Cells , Ethanol , Inflammation , Interleukin-6 , Lung , Mass Screening , Monoterpenes , Perilla , Perilla frutescens , Pneumonia , Tumor Necrosis Factor-alpha
9.
China Journal of Chinese Materia Medica ; (24): 3114-3119, 2010.
Article in Chinese | WPRIM | ID: wpr-260741

ABSTRACT

<p><b>OBJECTIVE</b>In order to find a method for improving the salt resistance of seeds and seedlings for Perilla frutescens under NaCl stress, seed germination and physiological characteristics of P. frutescens seedlings were studied.</p><p><b>METHOD</b>Several physiological indexes of P. frutescens seeds treated by Ca2+ and sodium nitroprusside (SNP) under NaCl stress like the germination vigor, germination rate, germination index and vigor index were measured. And other indexes like the biomass of the seedlings, the content of malondialdehyde (MDA) in leaves, the activities of superoxide (SOD), peroxidase (POD) and catalase (CAT) were also measured.</p><p><b>RESULT</b>The germination of P. frutescens seeds under NaCl stress was inhibited obviously. But after the treatment with Ca2+ and SNP, all of the germination indexes increased. And the seeds that treated with SNP + Ca2+ had the most significantly increase in all indexes. The germination vigor was 65.1%, the germination rate was 89.3%, the germination index and vigor index were 13.9 and 0.1109, respectively. The content of MDA decreased after the treatment. The activities of three enzymes include SOD, POD and CAT were increased by the treatment and get the maximin 0.84, 5.71 and 4.92 U x mg(-1) respectively. And the EGTA showed an obvious inhibition to the effect of SNP on P. frutescens.</p><p><b>CONCLUSION</b>SNP (0.1 mmol x L(-1)) and Ca2+ (10 mmol x L(-1)) could significantly alleviate the damages to the seeds and seedlings of P. frutescens under NaCl stress, and promote the salt resistance of the seeds and seedlings. These results might suggest that exogenous NO might enhance P. frutescens salt resistance and alleviate salt injury possible by enhancing Ca2+ influx by activating Ca2+ channels and improving concentration of Ca2+ of P. frutescens seedlings.</p>


Subject(s)
Calcium , Pharmacology , Catalase , Metabolism , Germination , Nitroprusside , Pharmacokinetics , Perilla , Physiology , Peroxidases , Metabolism , Plant Proteins , Metabolism , Seedlings , Metabolism , Physiology , Sodium Chloride , Metabolism , Stress, Physiological
10.
Acta Pharmaceutica Sinica ; (12): 840-845, 2006.
Article in Chinese | WPRIM | ID: wpr-294928

ABSTRACT

<p><b>AIM</b>To authenticate all the varieties of Perilla (single-species genus), to analyze sequences of rDNA ITS regions and single nucleotide polymorphism (SNP) within them and based on these, to design allele-specific diagnostic PCR primers.</p><p><b>METHODS</b>The rDNA ITS regions of the perilla varieties were sequenced and analyzed by Clustal X 1.8, MEGA 3.0. Allele-specific diagnostic PCR primers that can authenticate all the perilla varieties were designed based on SNPs loci.</p><p><b>RESULTS</b>The length of rDNA ITS sequences of perilla varieties ranged from 612 to 615 bp in size, including ITS1 (230 -232 bp), 5.8S (179 bp) and ITS2 (203 -204 bp). The GC content is about 61.5% - 61.9%. There is not only SNPs in non-coding region ITS1 and ITS2 (ncSNP), but also three coding SNPs (cSNP) loci in the conservative region of 5.8S. All the SNPs have only two allele loci polymorphism. The cSNP in 5.8S is related to the morphology variation among the varieties. Allele-specific diagnostic PCR primers have been designed according to SNPs loci to authenticate accurately all the seeds and leaves of Perilla varieties.</p><p><b>CONCLUSION</b>SNPs in rDNA ITS region can be used as an effective molecular markers to authenticate all the varieties of Perilla.</p>


Subject(s)
Alleles , DNA, Plant , Chemistry , Genetics , DNA, Ribosomal Spacer , Chemistry , Genetics , Genetic Markers , Perilla , Classification , Genetics , Perilla frutescens , Genetics , Plant Leaves , Genetics , Plants, Medicinal , Genetics , Polymerase Chain Reaction , Methods , Polymorphism, Single Nucleotide , Seeds , Genetics , Sequence Analysis, DNA , Species Specificity
11.
China Journal of Chinese Materia Medica ; (24): 12-15, 2005.
Article in Chinese | WPRIM | ID: wpr-276655

ABSTRACT

<p><b>OBJECTIVE</b>To provide evidence for establishing an efficient method of growing Panax quinquefolium by rotation of crops.</p><p><b>METHOD</b>Four-year old P. quinquefolium was cultivated in water and soil cultures. Biological assays were conducted with the aqueous extracts of P. quinquefolius, Fructus Perillae and roots of Coix lacryma-jobi. P. quinquefolium was cultivated in the soil where purple Perilla frutesens and C. lacryma-jobi were grown previously. The effects of rotation were determined.</p><p><b>RESULT</b>The stems, leaves and fibrous roots of Panax quinquefolium contained allelopathic substances. When the concentration of the allelopathic substances exceeded 1g per kg soil, P. quinquefolius could not grow. On the other hand, when the concentration of allelopathic substances fell below 0.2 g per kg soil, the rate of seedling growth was decreased by 25%. When P. quinquefolius was cultivated in the soil in which purple Perilla frutesens had previously grown, or in the soil supplemented with Fructus Perillae, the rates of seedling growth and the yield were raised by 26.8% and 11.5% tively, in comparison with the controls.</p><p><b>CONCLUSION</b>Rotation of Panax quinquefolium and Perilla frutesens was shown to be a good way for the cultivation of the former. During the growing process, application of Fructus Perillae to the soil could further enhance the growth and of Panax quinquefolium.</p>


Subject(s)
Agriculture , Methods , Coix , Germination , Panax , Chemistry , Perilla , Plant Extracts , Poisoning , Plant Leaves , Chemistry , Plant Roots , Chemistry , Plant Stems , Chemistry , Plants, Medicinal , Chemistry
SELECTION OF CITATIONS
SEARCH DETAIL