Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
AJMB-Avicenna Journal of Medical Biotechnology. 2012; 4 (4): 160-169
en Inglés | IMEMR | ID: emr-151641

RESUMEN

Peroxisome Proliferator Activated Receptor gamma [PPAR[gamma]], a member of nuclear receptor superfamily, comprises two isoforms in mouse. These two isoforms are encoded by different mRNAs, which are arisen by alternative promoter usage. There are two promoter regions upstream of PPAR[gamma] gene. A 3 kb fragment, containing several transcription factor binding sites, acts as PPAR[gamma]1 promoter region. Thus, expression pattern of PPAR[gamma]1 isoform is due to the potential transcription factors that could influence its promoter activity. PPAR[gamma], Retinoid X Receptor [RXR] and Vitamin D Receptor [VDR], as nuclear receptors could influence PPAR[gamma] gene expression pattern during several differentiation processes. During neural differentiation, PPAR[gamma]1 isoform expression reaches to maximal level at neural precursor cell formation. A vast computational analysis was carried out to reveal the PPAR[gamma]1 promoter region. The putative promoter region was then subcloned upstream of an EGFP reporter gene. Then the functionality of PPAR[gamma]1 promoter was assessed in different cell lines. Results indicated that Rosiglitazone increased PPAR[gamma]1 promoter regulated EGFP expression of neural precursor cells during Embryoid Body [EB] formation. Furthermore vitamin D reduced PPAR[gamma]1 promoter regulated EGFP expression of neural precursor cells during EB formation through binding to its receptor. This study suggests that there are potential response elements for PPAR/RXR and VDR/RXR heterodimers in PPAR[gamma]1 isoform promoter. Also VDR/RXR heterodimers may decrease PPAR[gamma] expression through binding to its promoter

2.
AJMB-Avicenna Journal of Medical Biotechnology. 2012; 4 (4): 206-209
en Inglés | IMEMR | ID: emr-151647

RESUMEN

Recently, we have shown that peroxisomal protein expression was induced upon retinoic acid treatment in mouse embryonic stem cells during the process of neurogenesis. Thus, characterization of the respective promoter could elucidate the molecular aspects of transcriptional regulation of this gene. Using the conventional software programs for promoter prediction, a putative promoter region was identified approximately 561 bp upstream of the peroxisomal protein coding sequence. In order to clone this region with a GC-content of 71.01%, a cocktail of ammonium sulfate buffer supplied with two additive components, betaine and dimethyl sulfoxide, and a high concentration of MgCl[2] was used. The modulated polymerase chain reaction composition significantly improved the amplification of GC-rich DNA target sequences. Improved amplification of this region was due to reduction in the formation of secondary structures by the GC-rich region. Therefore, this polymerase chain reaction composition could be generally used to facilitate the amplification of other GC-rich DNA sequences as verified by amplification of different GC rich regions

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA