Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros








Intervalo de año
1.
Acta Physiologica Sinica ; (6): 497-502, 2023.
Artículo en Chino | WPRIM | ID: wpr-1007764

RESUMEN

In this study, we used a rat model of pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT) to investigate the role and mechanism of angiotensin (Ang)-(1-7) in regulating pulmonary artery diastolic function. Three weeks after subcutaneous injection of MCT or normal saline, the right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVHI) of rats were detected using a right heart catheter. Vascular endothelium-dependent relaxation was evaluated by acetylcholine (ACh)-induced vasodilation. The relaxation function of vascular smooth muscle was evaluated by sodium nitroprusside (SNP)-induced vasodilation. Human pulmonary artery endothelial cells (HPAECs) were incubated with Ang-(1-7) to measure nitric oxide (NO) release levels. The results showed that compared with control rats, RVSP and RVHI were significantly increased in the MCT-PAH rats, and both ACh or SNP-induced vasodilation were worsened. Incubation of pulmonary artery of MCT-PAH rats with Ang-(1-7) (1 × 10-9-1 × 10-4 mol/L) caused significant vaso-relaxation. Pre-incubation of Ang-(1-7) in the pulmonary artery of MCT-PAH rats significantly improved ACh-induced endothelium-dependent relaxation, but had no significant effect on SNP-induced endothelium-independent relaxation. In addition, Ang-(1-7) treatment significantly increased NO levels in HPAECs. The Mas receptor antagonist A-779 inhibited the effects of Ang-(1-7) on endothelium-dependent relaxation and NO release from endothelial cells. The above results demonstrate that Ang-(1-7) promotes the release of NO from endothelial cells by activating Mas receptor, thereby improving the endothelium-dependent relaxation function of PAH pulmonary arteries.


Asunto(s)
Ratas , Humanos , Animales , Vasodilatación , Hipertensión Arterial Pulmonar , Monocrotalina/toxicidad , Ratas Sprague-Dawley , Hipertensión Pulmonar/inducido químicamente , Células Endoteliales , Arteria Pulmonar , Endotelio , Acetilcolina/farmacología , Nitroprusiato/farmacología
2.
Neuroscience Bulletin ; (6): 463-474, 2020.
Artículo en Inglés | WPRIM | ID: wpr-826801

RESUMEN

Chemical stimulation of the kidney increases sympathetic activity and blood pressure in rats. The hypothalamic paraventricular nucleus (PVN) is important in mediating the excitatory renal reflex (ERR). In this study, we examined the role of molecular signaling in the PVN in mediating the capsaicin-induced ERR and sympathetic activation. Bilateral PVN microinjections were performed in rats under anesthesia. The ERR was elicited by infusion of capsaicin into the cortico-medullary border of the right kidney. The reflex was evaluated as the capsaicin-induced changes in left renal sympathetic nerve activity and mean arterial pressure. Blockade of angiotensin type 1 receptors with losartan or inhibition of angiotensin-converting enzyme with captopril in the PVN abolished the capsaicin-induced ERR. Renal infusion of capsaicin significantly increased NAD(P)H oxidase activity and superoxide anion production in the PVN, which were prevented by ipsilateral renal denervation or microinjection of losartan into the PVN. Furthermore, either scavenging of superoxide anions or inhibition of NAD(P)H oxidase in the PVN abolished the capsaicin-induced ERR. We conclude that the ERR induced by renal infusion of capsaicin is mediated by angiotensin type 1 receptor-related NAD(P)H oxidase activation and superoxide anion production within the PVN.

3.
Acta Physiologica Sinica ; (6): 724-729, 2020.
Artículo en Chino | WPRIM | ID: wpr-878218

RESUMEN

The traditional medical experiment based on animal studies fails to reflect competency-oriented goal, and is not closely combined with clinical and scientific research, which does not meet the need for early clinical and scientific training. In order to cultivate the first-class medical talents, medical experimental teaching should conform to the trend of modern medical education, innovate teaching ideas and models, and update the hardware and software in time. Therefore, our teaching center adopts the triad medical experimental system which consists of "animal experiments, human functional experiments, and electronic standardized patient (ESP)-based virtual simulation experiments", and uses one system to integrate basic and clinical medicine, practice and virtual learning, teaching and scientific training. The system retains the core content of traditional animal experiments, and includes the most mature and widely used human physiological experiments to increase students' learning experience. With medical simulation experiment, it explains the specific physiological and pathophysiological processes of human body to improve students' cognitive and thinking ability. Here, we provide a systematic description on our triad medical experimental system, and discuss the experience to establish this novel system.


Asunto(s)
Animales , Humanos , Aprendizaje , Estudiantes
4.
Chinese Journal of Applied Physiology ; (6): 289-293, 2013.
Artículo en Chino | WPRIM | ID: wpr-235377

RESUMEN

<p><b>OBJECTIVE</b>To observe the effect of dopamine receptor (DR2) activation on hypoxia/reperfusion injury (HRI) in the neonatal rat cardiomyocytes, and to explore its mechanism.</p><p><b>METHODS</b>The hypoxia/reperfusion (H/R) injury model was established in primarily cultured neonatal rat cardiomyocytes, and randomly assigned: control, H/R, bromocriptine (Bro) and haloperidol (Hal) groups. The cell apoptosis was detected using inverted microscope, transmission electron microscope and flow cytometry (FCM). The lactate dehydrogenase(LDH) and superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in cell medium were analyzed. The expression of mRNA and protein of caspase-3, caspase-8, caspase-9, Fas, Fas-L, Cyt C and Bcl-2 were detected by RT-PCR and Western blot, respectively.</p><p><b>RESULTS</b>Compared with the control group, apoptosis rate, LDH activity, MDA content and the expression of pro-apoptotic factors and anti-apoptotic factors were increased, but SOD activity was decreased in H/R group. Compared with the H/R group, all index above-mentioned were down-regulated or reversed in Bro-group, and had no obvious differences in Hal-group.</p><p><b>CONCLUSION</b>The neonatal rat cardiomyocytes injury and apoptosis caused by hypoxia/reperfusion can be inhibited with DR2 activation, which mechanism is related to scavenging oxygen radical.</p>


Asunto(s)
Animales , Ratas , Animales Recién Nacidos , Apoptosis , Hipoxia de la Célula , Daño por Reperfusión Miocárdica , Metabolismo , Miocitos Cardíacos , Biología Celular , Metabolismo , Estrés Oxidativo , Ratas Wistar , Receptores de Dopamina D2 , Metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA