Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Añadir filtros








Intervalo de año
1.
Braz. j. microbiol ; 44(4): 1341-1348, Oct.-Dec. 2013. graf, tab
Artículo en Inglés | LILACS | ID: lil-705278

RESUMEN

Halo-tolerant, auxin producing bacteria could be used to induce salt tolerance in plants. A number of Rhizobium and auxin producing rhizobacterial strains were assessed for their ability to tolerate salt stress by conducting osmoadaptation assay. The selected strains were further screened for their ability to induce osmotic stress tolerance in mung bean seedlings under salt-stressed axenic conditions in growth pouch/jar trials. Three most effective strains of Rhizobium and Pseudomonas containing ACC-deaminase were evaluated in combination, for their ability to induce osmotic stress tolerance in mung bean at original, 4, and 6 dS m-1 under axenic conditions. Results showed that sole inoculation of Rhizobium and Pseudomonas strains improved the total dry matter up to 1.4, and 1.9 fold, respectively, while the increase in salt tolerance index was improved up to 1.3 and 2.0 fold by the Rhizobium and Pseudomonas strains, respectively. However, up to 2.2 fold increase in total dry matter and salt tolerance index was observed due to combined inoculation of Rhizobium and Pseudomonas strains. So, combined application of Rhizobium and Pseudomonas strains could be explored as an effective strategy to induce osmotic stress tolerance in mung bean.


Asunto(s)
Fabaceae/microbiología , Fabaceae/fisiología , Ácidos Indolacéticos/metabolismo , Presión Osmótica , Pseudomonas/crecimiento & desarrollo , Rhizobium/crecimiento & desarrollo , Estrés Fisiológico , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA