Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros








Intervalo de año
1.
Acta Anatomica Sinica ; (6): 17-24, 2024.
Artículo en Chino | WPRIM | ID: wpr-1015146

RESUMEN

Objective The volume and cortical thickness of gray matter in patients with multiple sclerosis (MS) and neuromyelitis optica (NMO) were compared and analyzed by voxel⁃based morphometry (VBM) and surface⁃based morphometry (SBM), and the differences in the structural changes of gray matter in the two diseases were discussed. Methods A total of 21 MS patients, 16 NMO patients and 19 healthy controls were scanned by routine MRI sequence. The data were processed and analyzed by VBM and SBM method based on the statistical parameter tool SPM12 of Matlab2014a platform and the small tool CAT12 under SPM12. Results Compared with the normal control group (NC), after Gaussian random field (GRF) correction, the gray matter volume in MS group was significantly reduced in left superior occipital, left cuneus, left calcarine, left precuneus, left postcentral, left central paracentral lobule, right cuneus, left middle frontal, left superior frontal and left superior medial frontal (P<0. 05). After family wise error (FWE) correction, the thickness of left paracentral, left superiorfrontal and left precuneus cortex in MS group was significantly reduced (P<0. 05). Compared with the NC group, after GRF correction, the gray matter volume in the left postcentral, left precentral, left inferior parietal, right precentral and right middle frontal in NMO group was significantly increased (P<0. 05). In NMO group, the volume of gray matter in left middle occipital, left superior occipital, left inferior temporal, right middle occipital, left superior frontal orbital, right middle cingulum, left anterior cingulum, right angular and left precuneus were significantly decreased (P<0. 05). Brain regions showed no significant differences in cortical thickness between NMO groups after FWE correction. Compared with the NMO group, after GRF correction, the gray matter volume in the right fusiform and right middle frontal in MS group was increased significantly(P<0. 05). In MS group, the gray matter volume of left thalamus, left pallidum, left precentral, left middle frontal, left middle temporal, right pallidum, left inferior parietal and right superior parietal were significantly decreased (P<0. 05). After FWE correction, the thickness of left inferiorparietal, left superiorparietal, left supramarginal, left paracentral, left superiorfrontal and left precuneus cortex in MS group decreased significantly (P<0. 05). Conclusion The atrophy of brain gray matter structure in MS patients mainly involves the left parietal region, while NMO patients are not sensitive to the change of brain gray matter structure. The significant difference in brain gray matter volume between MS patients and NMO patients is mainly located in the deep cerebral nucleus mass.

2.
Acta Anatomica Sinica ; (6): 13-22, 2023.
Artículo en Chino | WPRIM | ID: wpr-1015259

RESUMEN

Objective To explore the effect of activation of mammalian target of rapmycin complex 2(mTORC2)/Akt signaling pathway on dopaminergic neurons and behavior in 6-hydroxydopamine (6-OHDA) model mice and its possible mechanism. Methods Selecting 36 mice which The Nestin-CreERTM and ROSA26-LacZ reporter genes were detected at the same time in 3-month-old male C57BL/6J mice weighing 20-25 g divideng them into 4 gruops, NS+ corn oil group, 6-OHDA+corn oil group, 6-OHDA+PP242 group and 6-OHDA+A-443654 group, and 6-OHDA was injected into the right striatum of the brain to replicate the Parkinson’s disease (PD) model of mice, and then daily intraperitoneal injection of mTORC2/Akt signaling pathway agonist A-443654 or inhibitor PP242. Serum interleukin-1β (IL-1β) and tumor necrosis factor-α(TNF-α)levels were measured by enzyme-linked immunosorbent assay. Immunohistochemistry and immunofluorescence staining were performed to investigate the change of microglia, dopaminergic neurons as well as neural progenitor cells (NPCs). Western blotting was used to detect the expression of related protein of mTORC2/Akt signaling pathway including rictor, p-Akt and regulated in development and DNA dgmage responses 1(REDD1) and the interaction between them were verified by immunoprecipitation. Finally, the behavioral performance of each group of mice was observed. Results With the activation of microglia and the increase of inflammatory factors in PD model mice, the number of dopaminergic neurons in the substantia nigra(SN) decreased significantly, and the motor function of the mice was impaired, but the number of NPCs increased significantly compared with the control mice, mTORC2/Akt signaling pathway related protein expression was also significantly up-regulated. A-443654 treatment further up-regulated the expression of these proteins, meanwhile the indicators mentioned above were ameliorated. However, the inhibitor PP242 treatment group showed completely opposite result with the agonist group. Conclusion A-443654 can promote the proliferation of NPCs and the number of new-born dopaminergic neurons by up-regulating related proteins of mTORC2/Akt signaling pathway, and reducing the activation of microglia and the level of inflammation factors, which ultimately lead to the amelioration of SN-striatal dopaminergic neurons and behavioral performance in PD model mice.

3.
Acta Anatomica Sinica ; (6): 521-530, 2023.
Artículo en Chino | WPRIM | ID: wpr-1015181

RESUMEN

[Abstract] Objective To study whether the regulation of mammalian target of rapamycin complex 2(mTORC2) / Akt signaling pathway has a protective effect on SH-SY5Y cell line damaged by 6-hydroxydopamine (6-OHDA), and to clarify its molecular mechanism. Methods SH-SY5Y cells treated with retinoic acid (RA) were given 6-OHDA, mTORC2 signaling pathway inhibitor PP242 and agonist A-443654 respectively. The changes of cell number in each group were investigated by immunofluorescent staining; The total protein was extracted and the expression level and interaction of key proteins in mTORC2 signaling pathway were determined by Western blotting and co-immunoprecipitation (CoIP); The apoptosis rate of cells in each group was detected by flow cytometry. At the same time, the co-culture Parkinson’ s disease (PD) model was made using SH-SY5Y cell line and Bv-2 cell line; MTT colorimetric method was used to detect the cell viability of each group; ELISA was used to detect the content of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in cell culture supernatant. Results The number of tyrosine hydroxylase(TH) / proliferating cell nuclear antigen (PCNA) / hochest-, TH / 5-bronmo-2’ -deoxyuridine(BrdU) -labeled positive cells in 6-OHDA-lesioned PD cell model group was significantly lower than that in the normal group; The apoptosis rate was higher; The expression of Rictor, p-Akt and regulated in DNA damage and development 1(REDD1) was increased; There was an interaction between Rictor and p-Akt or REDD1; The cell viability was significantly reduced in the co-culture model; the content of TNF-α and IL-β increased in the cell culture supernatant. With further up-regulation of the abovementioned protein expressions, the cell survival, apoptosis and pro-inflammatory cytokine levels in A-443654 group were significantly ameliorated, while PP242 group showed the opposite changes. Conclusion A-443654 activates mTORC2 signaling pathway by p-Akt, which increases the expression of Rictor and REDD1 protein. These changes contribute to the amelioration in cell survival rate, apoptosis rate, and the proliferation and differentiation and decreasion of apoptosis rate of SH-SY5Y cells. These result improved 6-OHDA-induced cell damage and inhibited the release of pro-inflammatory cytokines.

4.
Acta Anatomica Sinica ; (6): 144-154, 2022.
Artículo en Chino | WPRIM | ID: wpr-1015341

RESUMEN

Objective To explore the effect of recombination signal binding protein for immunoglobulin Kappa J region (RBP-Jκ) on the proliferation and differentiation of CD133 ̄positive ependymal cells and its possible mechanism. Methods RBP-Jκ in CD133-positive ependymal cells of lateral ventricle was interfered with siRNA in the fetuses of embryos which were isolated from 12-day pregnant Institute of Cancer Research(ICR) mouse (3 mice) and knocked out in CD133-CreER

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA