RESUMEN
Background Toad secretions are a source of molecules with potential biotechnological application on a wide spectrum of diseases. Toads from theRhinella family have two kinds of poisonous glands, namely granular and mucous glands. Rhinella schneideritoads produce granular secretions that comprise a great number of molecules, including serine proteases inhibitors. Serine proteases, such as trypsin, chymotrypsin and elastase, are enzymes that have a serine amino acid into its catalytic site and can be found in a large number of vertebrate species and pathogenic microorganisms. Therefore, the present work aims to purify a serine protease inhibitor from Rhinella schneiderigranular secretions.Findings This study presents the protocol used to purify a serine protease inhibitor from the Rhinella schneideri poison. The granular secretion was submitted to dialysis in order to separate the low molecular weight compounds, which were submitted to a reversed phase-fast protein liquid chromatography fractionation step in a C2C18 column. The major fractions were tested over trypsin, chymotrypsin and elastase through colorimetric assay. The inhibition tests were performed with the enzyme in absence (positive control) and presence of fractions, denatured enzyme (negative control) and the respective chromogenic substrate. Rs20 was the compound with the major inhibitory activity over chymotrypsin, inducing a delay in the formation of the chromogenic enzymatic product. The structure characterization of Rs20 was performed by high resolution electronspray ionization-mass spectrometry (HRESI-MS) and gas chromatography coupled with mass spectrometry (GC-MS). HRESI showed an intense signal suggesting the presence of bufadienolide with less than 10 ppm error. In addition, it was observed a low intense signal at m/z399 that could be lithocholic acid, a biosynthetic precursor of bufadienolide. Finally, GC-MS analysis applying NIST library identification reinforced this hypothesis.Conclusions The current study have isolated and partially characterized the function and structure of the first bufadienolide with inhibitory action over chymotrypsin.(AU)
Asunto(s)
Animales , Inhibidores de Serina Proteinasa , Bufo rana , Serina ProteasasRESUMEN
Background The skin secretions of toads of the family Bufonidae contain biogenic amines, alkaloids, steroids (bufotoxins), bufodienolides (bufogenin), peptides and proteins. The poison of Rhinella schneideri, formerly classified as Bufo paracnemis, presents components that act on different biological systems, including the complement system. The aim of this study was to isolate and examine the activity ofRhinella schneideri poison (RsP) components on the complement system.Methods The components active on the complement system were purified in three chromatographic steps, using a combination of cation-exchange, anion-exchange and gel filtration chromatography. The resulting fractions were analyzed by SDS-PAGE and screened for their activity in the hemolytic assay of the classical/lectin complement pathways. Fractions active on the complement system were also assessed for their ability to generate C3 fragments evaluated by two dimensional immunoelectrophoresis assay, C3a and C5a by neutrophil chemotaxis assay and SC5b-9 complex by ELISA assay.Results The fractionation protocol was able to isolate the component S5 from theRsP, as demonstrated by SDS-PAGE and the RP-FPLC profile. S5 is a protein of about 6000 Da, while S2 presents components of higher molecular mass (40,000 to 50,000 Da). Fractions S2 and S5 attenuated the hemolytic activity of the classical/lectin pathways after preincubation with normal human serum. Both components stimulated complement-dependent neutrophil chemotaxis and the production of C3 fragments, as shown by two-dimensional immunoelectrophoresis. S2 showed a higher capacity to generate the SC5b- 9 complex than the other fractions. This action was observed after the exposure of normal human serum to the fractions.Conclusions This is the first study to examine the activity of RsP components on the complement system. Fractions S2 and S5 reduced the complement hemolytic activity, stimulated complement-dependent neutrophil chemotaxis and stimulated the production of C3 fragments, indicating that they were able to activate the complement cascade. Furthermore, fraction S2 was also able to generate the SC5b-9 complex. These components may be useful tools for studying dysfunction of the complement cascade.(AU)
Asunto(s)
Animales , Venenos , Productos Biológicos , Bufonidae , QuimiotaxisRESUMEN
Arachnida is the largest class among the arthropods, constituting over 60,000 described species (spiders, mites, ticks, scorpions, palpigrades, pseudoscorpions, solpugids and harvestmen). Many accidents are caused by arachnids, especially spiders and scorpions, while some diseases can be transmitted by mites and ticks. These animals are widely dispersed in urban centers due to the large availability of shelter and food, increasing the incidence of accidents. Several protein and non-protein compounds present in the venom and saliva of these animals are responsible for symptoms observed in envenoming, exhibiting neurotoxic, dermonecrotic and hemorrhagic activities. The phylogenomic analysis from the complementary DNA of single-copy nuclear protein-coding genes shows that these animals share some common protein families known as neurotoxins, defensins, hyaluronidase, antimicrobial peptides, phospholipases and proteinases. This indicates that the venoms from these animals may present components with functional and structural similarities. Therefore, we described in this review the main components present in spider and scorpion venom as well as in tick saliva, since they have similar components. These three arachnids are responsible for many accidents of medical relevance in Brazil. Additionally, this study shows potential biotechnological applications of some components with important biological activities, which may motivate the conducting of further research studies on their action mechanisms.(AU)
Asunto(s)
Venenos de Escorpión , Escorpiones , Venenos de Araña , Arañas , Garrapatas , Productos BiológicosRESUMEN
Arachnida is the largest class among the arthropods, constituting over 60,000 described species (spiders, mites, ticks, scorpions, palpigrades, pseudoscorpions, solpugids and harvestmen). Many accidents are caused by arachnids, especially spiders and scorpions, while some diseases can be transmitted by mites and ticks. These animals are widely dispersed in urban centers due to the large availability of shelter and food, increasing the incidence of accidents. Several protein and non-protein compounds present in the venom and saliva of these animals are responsible for symptoms observed in envenoming, exhibiting neurotoxic, dermonecrotic and hemorrhagic activities. The phylogenomic analysis from the complementary DNA of single-copy nuclear protein-coding genes shows that these animals share some common protein families known as neurotoxins, defensins, hyaluronidase, antimicrobial peptides, phospholipases and proteinases. This indicates that the venoms from these animals may present components with functional and structural similarities. Therefore, we described in this review the main components present in spider and scorpion venom as well as in tick saliva, since they have similar components. These three arachnids are responsible for many accidents of medical relevance in Brazil. Additionally, this study shows potential biotechnological applications of some components with important biological activities, which may motivate the conducting of further research studies on their action mechanisms.
Asunto(s)
Animales , Animales Ponzoñosos , Garrapatas , Saliva , Venenos de Araña , Venenos de EscorpiónRESUMEN
Background The skin secretions of toads of the family Bufonidae contain biogenic amines, alkaloids, steroids (bufotoxins), bufodienolides (bufogenin), peptides and proteins. The poison of Rhinella schneideri, formerly classified as Bufo paracnemis, presents components that act on different biological systems, including the complement system. The aim of this study was to isolate and examine the activity ofRhinella schneideri poison (RsP) components on the complement system.Methods The components active on the complement system were purified in three chromatographic steps, using a combination of cation-exchange, anion-exchange and gel filtration chromatography. The resulting fractions were analyzed by SDS-PAGE and screened for their activity in the hemolytic assay of the classical/lectin complement pathways. Fractions active on the complement system were also assessed for their ability to generate C3 fragments evaluated by two dimensional immunoelectrophoresis assay, C3a and C5a by neutrophil chemotaxis assay and SC5b-9 complex by ELISA assay.Results The fractionation protocol was able to isolate the component S5 from theRsP, as demonstrated by SDS-PAGE and the RP-FPLC profile. S5 is a protein of about 6000 Da, while S2 presents components of higher molecular mass (40,000 to 50,000 Da). Fractions S2 and S5 attenuated the hemolytic activity of the classical/lectin pathways after preincubation with normal human serum. Both components stimulated complement-dependent neutrophil chemotaxis and the production of C3 fragments, as shown by two-dimensional immunoelectrophoresis. S2 showed a higher capacity to generate the SC5b- 9 complex than the other fractions. This action was observed after the exposure of normal human serum to the fractions.Conclusions This is the first study to examine the activity of RsP components on the complement system. Fractions S2 and S5 reduced the complement hemolytic activity, stimulated complement-dependent neutrophil chemotaxis and stimulated the production of C3 fragments, indicating that they were able to activate the complement cascade. Furthermore, fraction S2 was also able to generate the SC5b-9 complex. These components may be useful tools for studying dysfunction of the complement cascade.
Asunto(s)
Animales Ponzoñosos , Bufonidae , Venenos de AnfibiosRESUMEN
Background Toad secretions are a source of molecules with potential biotechnological application on a wide spectrum of diseases. Toads from theRhinella family have two kinds of poisonous glands, namely granular and mucous glands. Rhinella schneideritoads produce granular secretions that comprise a great number of molecules, including serine proteases inhibitors. Serine proteases, such as trypsin, chymotrypsin and elastase, are enzymes that have a serine amino acid into its catalytic site and can be found in a large number of vertebrate species and pathogenic microorganisms. Therefore, the present work aims to purify a serine protease inhibitor from Rhinella schneiderigranular secretions.Findings This study presents the protocol used to purify a serine protease inhibitor from the Rhinella schneideri poison. The granular secretion was submitted to dialysis in order to separate the low molecular weight compounds, which were submitted to a reversed phase-fast protein liquid chromatography fractionation step in a C2C18 column. The major fractions were tested over trypsin, chymotrypsin and elastase through colorimetric assay. The inhibition tests were performed with the enzyme in absence (positive control) and presence of fractions, denatured enzyme (negative control) and the respective chromogenic substrate. Rs20 was the compound with the major inhibitory activity over chymotrypsin, inducing a delay in the formation of the chromogenic enzymatic product. The structure characterization of Rs20 was performed by high resolution electronspray ionization-mass spectrometry (HRESI-MS) and gas chromatography coupled with mass spectrometry (GC-MS). HRESI showed an intense signal suggesting the presence of bufadienolide with less than 10 ppm error. In addition, it was observed a low intense signal at m/z399 that could be lithocholic acid, a biosynthetic precursor of bufadienolide. Finally, GC-MS analysis applying NIST library identification reinforced this hypothesis.Conclusions The current study have isolated and partially characterized the function and structure of the first bufadienolide with inhibitory action over chymotrypsin.