Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Añadir filtros








Intervalo de año
1.
Journal of Cancer Prevention ; : 123-128, 2019.
Artículo en Inglés | WPRIM | ID: wpr-764303

RESUMEN

BACKGROUND: Reactive oxygen species (ROS) are involved in various cellular diseases. Excessive ROS can cause intracellular oxidative stress, resulting in a calcium imbalance and even aging. In this study, we evaluated the protective effect of esculetin on oxidative stress-induced aging in human HaCaT keratinocytes. METHODS: Human keratinocytes were pretreated with esculetin for 30 minutes and treated with H₂O₂. Then, the protective effects on oxidative stress-induced matrix metalloproteinase (MMP)-1 were detected by Flou-4-AM staining, reverse transcription-PCR, Western blotting, and quantitative fluorescence assay. RESULTS: Esculetin prevented H₂O₂-induced aging by inhibiting MMP-1 mRNA, protein, and activity levels. In addition, esculetin decreased abnormal levels of phospho-MEK1, phospho-ERK1/2, phospho-SEK1, phospho-JNK1/2, c-Fos, and phospho-c-Jun and inhibited activator protein 1 binding activity. CONCLUSIONS: Esculetin prevented excessive levels of intracellular calcium and reduced the expression levels of aging-related proteins.


Asunto(s)
Humanos , Envejecimiento , Western Blotting , Calcio , Fluorescencia , Peróxido de Hidrógeno , Hidrógeno , Queratinocitos , Metaloproteinasa 1 de la Matriz , Estrés Oxidativo , Especies Reactivas de Oxígeno , ARN Mensajero , Piel , Factor de Transcripción AP-1
2.
Biomolecules & Therapeutics ; : 562-569, 2019.
Artículo en Inglés | WPRIM | ID: wpr-763045

RESUMEN

Niacinamide (NIA) is a water-soluble vitamin that is widely used in the treatment of skin diseases. Moreover, NIA displays antioxidant effects and helps repair damaged DNA. Recent studies showed that particulate matter 2.5 (PM(2.5)) induced reactive oxygen species (ROS), causing disruption of DNA, lipids, and protein, mitochondrial depolarization, and apoptosis of skin keratinocytes. Here, we investigated the protective effects of NIA on PM(2.5)-induced oxidative stress in human HaCaT keratinocytes. We found that NIA could inhibit the ROS generation induced by PM(2.5), as well block the PM(2.5)-induced oxidation of molecules, such as lipids, proteins, and DNA. Furthermore, NIA alleviated PM(2.5)-induced accumulation of cellular Ca²⁺, which caused cell membrane depolarization and apoptosis, and reduced the number of apoptotic cells. Collectively, the findings show that NIA can protect keratinocytes from PM(2.5)-induced oxidative stress and cell damage.


Asunto(s)
Humanos , Antioxidantes , Apoptosis , Membrana Celular , ADN , Queratinocitos , Proteínas Mitocondriales , Niacinamida , Estrés Oxidativo , Material Particulado , Especies Reactivas de Oxígeno , Enfermedades de la Piel , Piel , Vitaminas
3.
Biomolecules & Therapeutics ; : 395-403, 2019.
Artículo en Inglés | WPRIM | ID: wpr-763023

RESUMEN

Purpurogallin, a natural phenol obtained from oak nutgalls, has been shown to possess antioxidant, anticancer, and anti-inflammatory effects. Recently, in addition to ultraviolet B (UVB) radiation that induces cell apoptosis via oxidative stress, particulate matter 2.5 (PM(2.5)) was shown to trigger excessive production of reactive oxygen species. In this study, we observed that UVB radiation and PM(2.5) severely damaged human HaCaT keratinocytes, disrupting cellular DNA, lipids, and proteins and causing mitochondrial depolarization. Purpurogallin protected HaCaT cells from apoptosis induced by UVB radiation and/or PM(2.5). Furthermore, purpurogallin effectively modulates the pro-apoptotic and anti-apoptotic proteins under UVB irradiation via caspase signaling pathways. Additionally, purpurogallin reduced apoptosis via MAPK signaling pathways, as demonstrated using MAPK-p38, ERK, and JNK inhibitors. These results indicate that purpurogallin possesses antioxidant effects and protects cells from damage and apoptosis induced by UVB radiation and PM(2.5).


Asunto(s)
Humanos , Antioxidantes , Proteínas Reguladoras de la Apoptosis , Apoptosis , ADN , Queratinocitos , Estrés Oxidativo , Material Particulado , Fenol , Especies Reactivas de Oxígeno
4.
Biomolecules & Therapeutics ; : 41-47, 2019.
Artículo en Inglés | WPRIM | ID: wpr-719643

RESUMEN

The apoptotic effects of shikonin (5,8-dihydroxy-2-[(1R)-1-hydroxy-4-methylpent-3-enyl]naphthalene-1,4-dione) on the human colon cancer cell line SNU-407 were investigated in this study. Shikonin showed dose-dependent cytotoxic activity against SNU-407 cells, with an estimated IC50 value of 3 µM after 48 h of treatment. Shikonin induced apoptosis, as evidenced by apoptotic body formation, sub-G1 phase cells, and DNA fragmentation. Shikonin induced apoptotic cell death by activating mitogen-activated protein kinase family members, and the apoptotic process was mediated by the activation of endoplasmic reticulum (ER) stress, leading to activation of the PERK/elF2α/CHOP apoptotic pathway, and mitochondrial Ca2+ accumulation. Shikonin increased mitochondrial membrane depolarization and altered the levels of apoptosis-related proteins, with a decrease in B cell lymphoma (Bcl)-2 and an increase in Bcl-2-associated X protein, and subsequently, increased expression of cleaved forms of caspase-9 and -3. Taken together, we suggest that these mechanisms, including MAPK signaling and the ER-and mitochondria-mediated pathways, may underlie shikonin-induced apoptosis related to its anticancer effect.


Asunto(s)
Humanos , Apoptosis , Proteína X Asociada a bcl-2 , Caspasa 9 , Muerte Celular , Línea Celular , Colon , Neoplasias del Colon , Fragmentación del ADN , Retículo Endoplásmico , Vesículas Extracelulares , Concentración 50 Inhibidora , Linfoma de Células B , Mitocondrias , Membranas Mitocondriales , Proteínas Quinasas
5.
Biomolecules & Therapeutics ; : 85-91, 2019.
Artículo en Inglés | WPRIM | ID: wpr-719637

RESUMEN

Oxidative stress is considered a major contributor in the pathogenesis of diabetic neuropathy and in diabetes complications, such as nephropathy and cardiovascular diseases. Diabetic neuropathy, which is the most frequent complications of diabetes, affect sensory, motor, and autonomic nerves. This study aimed to investigate whether 7,8-dihydroxyflavone (7,8-DHF) protects SH-SY5Y neuronal cells against high glucose-induced toxicity. In the current study, we found that diabetic patients exhibited higher lipid peroxidation caused by oxidative stress than healthy subjects. 7,8-DHF exhibits superoxide anion and hydroxyl radical scavenging activities. High glucose-induced toxicity severely damaged SH-SY5Y neuronal cells, causing mitochondrial depolarization; however, 7,8-DHF recovered mitochondrial polarization. Furthermore, 7,8-DHF effectively modulated the expression of pro-apoptotic protein (Bax) and anti-apoptotic protein (Bcl-2) under high glucose, thus inhibiting the activation of caspase signaling pathways. These results indicate that 7,8-DHF has antioxidant effects and protects cells from apoptotic cell death induced by high glucose. Thus, 7,8-DHF may be developed into a promising candidate for the treatment of diabetic neuropathy.


Asunto(s)
Humanos , Antioxidantes , Vías Autónomas , Enfermedades Cardiovasculares , Muerte Celular , Complicaciones de la Diabetes , Neuropatías Diabéticas , Glucosa , Voluntarios Sanos , Radical Hidroxilo , Peroxidación de Lípido , Neuronas , Estrés Oxidativo , Superóxidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA