Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros








Intervalo de año
1.
Asian Pacific Journal of Tropical Biomedicine ; (12): 109-115, 2019.
Artículo en Chino | WPRIM | ID: wpr-744054

RESUMEN

Objective: To determine the anti-neuroinflammatory activity of Moringa oleifera leaf extract (MLE) under lipopolysaccharide stimulation of mouse murine microglia BV2 cells in vitro. Methods: The cytotoxicity effect of MLE was investigated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5- diphenyl-tetrazolium bromide assay. The inflammatory response of BV-2 cells were induced with lipopolysaccharide. The generation of nitric oxide levels was determined by using Griess assay and the level of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) was evaluated by ELISA kit. The expression of iNOS, COX-2 as well as IκB-α was carried out by immunoblot analysis. Results: MLE reduced the nitric oxide production in concentration-dependent manner, and maintained the viability of BV-2 microglial cells which indicated absence of toxicity. In addition, MLE repressed the activation of nuclear factor kappa B by arresting the deterioration of IκB-α, consequently resulted in suppression of cytokines expression such as COX-2 and iNOS. Conclusions: MLE inhibitory activities are associated with the inhibition of nuclear factor kappa B transcriptional activity in BV2 microglial cells. Thus MLE may offer a substantial treatment for neuroinflammatory diseases.

2.
Asian Pacific Journal of Tropical Biomedicine ; (12): 394-402, 2018.
Artículo en Chino | WPRIM | ID: wpr-700143

RESUMEN

Objective: To identify the bioactive extracts from Alternanthera sessilis and investigate its cytotoxicity potential against colon cancer cells, HT-29. Methods: This study examined the effects of three parts (aerial, leaf, stem) of whole plant on HT-29 colon cancer cell lines. Three different extracts from the plant parts were prepared by maceration technique using 80% ethanol. The anticancer activities were determined using MTT, clonogenic, cell motility and AOPI assay. The chemical composition profiling was analyzed by GC-MS. Results: Among three plant part extracts, leaf extract greatly suppressed the growth of colon cancer cells in time and dosage-dependent manner, followed by aerial and stem. The cytotoxicity results were rationalized with clonogenic, cell motility and AO/PI assay, where extract showed the most active activity compared to aerial and stem extracts. GC-MS analysis of leaf extract showed there were various recognized anti-cancer, anti-oxidant and anti-inflammatory compounds. Conclusions: Amid the screened extracts, the leaf extract exhibits the credible cytotoxic, anti-proliferative and apoptotic activity and hence, our findings call for additional research to conclude the active compounds and their mechanisms determining the apoptotic activity.

3.
Asian Pacific Journal of Tropical Biomedicine ; (12): 320-327, 2018.
Artículo en Chino | WPRIM | ID: wpr-700132

RESUMEN

Objective: To evaluate the antioxidant and antidiabetic mechanism(s) of ethyl acetate extract fraction of Moringa oleifera (M. oleifera) leaves on streptozotocin-induced diabetes in male Sprague-Dawley rats. Methods: A total of 24 adult male rats were segregated randomly into four groups (6 rats each group). Streptozotocin-induced diabetes rats were given (oral gavage) ethyl acetate extract fraction of M. oleifera (200 mg/kg b.w.) for 30 d. The rats of control and experimental groups were sacrificed after 24 hours of final dose of treatment, to extract blood and pancreatic tissue for biochemical and histopathological analysis. Results: The ethyl acetate extract fraction of M. oleifera significantly reversed (P<0.05) the manifestation of streptozotocin on the levels of serum glucose & insulin, lipid profile, hepatic damage markers (alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and lactate dehydrogenase),malondialdehyde formation, antioxidants (glutathione, Vitamin C & Vitamin E), antioxidant enzymes (superoxide dismutase, glutathione S-transferase, glutathione peroxidase and catalase) and pro-inflammatory cytokines (IL-1β, TNF-α& IL-6). Histopathological analysis of pancreatic tissues was in concurrence with the biochemical results. Conclusions: These findings support that M. oleifera leaves have potent therapeutic effect on diabetes mellitus via increasing antioxidant levels and inhibition of pro-inflammatory mediators.

4.
Asian Pacific Journal of Tropical Biomedicine ; (12): 1583-1587, 2012.
Artículo en Chino | WPRIM | ID: wpr-672459

RESUMEN

Objective: The present investigation was to evaluate the possible anti-diabetic effect of mangiferin from Salacia chinensis (S. chinensis) on the activities of kidney carbohydrate metabolic enzymes in chemically induced diabetic rats. Methods: Diabetes was induced by streptozotocin (STZ) in adult male rats, as a single intraperitoneal injection at a dose of 55 mg/kg body weight. The STZ-induced diabetic rats were treated by mangiferin and glibenclamide (positive control drug) for 30 days. At the end of the experiment, the rats were sacrificed and carbohydrate metabolic enzyme activities were analyzed in the kidney. Results: Diabetic control rats showed a significant increase in the level of fasting blood glucose and also increase the activities of carbohydrate metabolic enzymes in kidney on successive days of the experiment as compared with their basal values. Daily oral administration of mangiferin showed a significant decrease in the blood glucose when compared to diabetic control. The anti-hyperglycemic effect was obtained with the dose of 40 mg/kg b.wt. In addition, treatment of mangiferin shows alteration in kidney carbohydrate metabolic enzymes including gluconeogenic enzymes like glucose-6-phosphatase and fructose-1,6-disphosphatase. These results were comparable with positive control drug, glibenclamide. Conclusions: The results obtained in this study provide evidence of the anti-diabetic potential of mangiferin, mediated through the regulation of carbohydrate key metabolic enzyme activities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA