Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Journal of Trauma ; (12): 659-664, 2023.
Artículo en Chino | WPRIM | ID: wpr-992647

RESUMEN

Traumatic brain injury (TBI) is a major reason for temporary or permanent dyskinesia and cognitive impairment of the organism. Generally, TBI induces subsequent neuroinflammation to assist cell debris removal and tissue repair and regeneration after injury. However, overactivation or long-term activation of immune cells will exacerbate nerve damage or death, cause cognitive dysfunction, and ultimately lead to neurodegenerative diseases. Therefore, secondary damage caused by persistent inflammation is a key component of TBI pathological process. As the main metabolite of anaerobic glycolysis, lactate is increased after TBI and participates in brain inflammation as an important immune regulatory molecule rather than a metabolic waste. Importantly, histone lysine lactylation as a novel type of histone post-translational modifications (HPTM) derived from lactate allows lactate to participate in the regulation of complex immunopathophysiological processes of the central nervous system after TBI. Further study on the process of histone lactylation and its immune regulation mechanism during TBI may provide new insights for early intervention and improvement of TBI prognosis. Thus, the authors reviewed the role of histone lactylation in the immune regulation of TBI, so as to further elucidate the mechanism of TBI and the explore new warning and prevention measures from the perspective of HPTM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA