RESUMEN
Context: Conventional casting techniques following the manufacturers' recommendations are time consuming. Accelerated casting techniques have been reported, but their accuracy with base metal alloys has not been adequately studied. Aim: We measured the vertical marginal gap of nickel-chromium copings made by conventional and accelerated casting techniques and determined the clinical acceptability of the cast copings in this study. Settings and Design: Experimental design, in vitro study, lab settings. Materials and Methods: Ten copings each were cast by conventional and accelerated casting techniques. All copings were identical, only their mold preparation schedules differed. Microscopic measurements were recorded at ×80 magnification on the perpendicular to the axial wall at four predetermined sites. The marginal gap values were evaluated by paired t test. Results: The mean marginal gap by conventional technique (34.02 μm) is approximately 10 μm lesser than that of accelerated casting technique (44.62 μm). As the P value is less than 0.0001, there is highly significant difference between the two techniques with regard to vertical marginal gap. Conclusion: The accelerated casting technique is time saving and the marginal gap measured was within the clinically acceptable limits and could be an alternative to time-consuming conventional techniques.
RESUMEN
Context: Alloys have been considered to be of paramount importance in the field of prosthodontics. Long span prosthesis may often require joining of one or more individual castings to obtain better fit, occlusal harmony and esthetics in comparison to one-piece casting. Aim: This study was undertaken to evaluate the mechanical properties of base metal alloys joined by two different techniques, namely, gas oxygen torch soldering and laser fusion, compared to a one-piece casting. Mechanical properties evaluated were tensile strength, percentage of elongation and hardness of the solder joint. In addition, corrosion properties and scanning electron microscopic appearance of the joints were also evaluated. Materials and Methods: The samples were prepared according to American Society for Testing Materials specifications (ASTM, E8). Specimens were made with self-cure acrylic and then invested in phosphate-bonded investment material. Casting was done in induction casting machine. Thirty specimens were thus prepared for each group and compared with 30 specimens of the one-piece casting group. Statistical Analysis Used: SPSS software (version 10.0, Chicago, IL, USA) was used for statistical analysis. ANOVA and Benferroni post hoc tests were done for multiple comparisons between the groups and within the groups for mean difference and standard error. Results: Results showed that tensile strength of the one-piece casting was higher than laser fused and gas oxygen torch soldered joints. Laser fused joints exhibited higher hardness values compared to that of gas oxygen torch soldered joints. Scanning electron microscopic examination revealed greater porosity in the gas oxygen torch soldered joints. This contributed to the reduction in the strength of the joint. Gas oxygen torch soldered joints showed less corrosion resistance when compared to laser fused joints and one-piece casting. Conclusion: Laser fusion, which is a recent introduction to the field of prosthodontics, produces joints which have properties between those of one-piece casting and the gas oxygen torch soldering.