Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Clinical and Experimental Vaccine Research ; : 119-128, 2018.
Artículo en Inglés | WPRIM | ID: wpr-716057

RESUMEN

PURPOSE: The goal of this study was to purify and characterize Ebola virus glycoprotein (GP)-specific IgG antibodies from hybridoma clones. MATERIALS AND METHODS: For hybridoma production, mice were injected by intramuscular-electroporation with GP DNA vaccines, and boosted with GP vaccines. The spleen cells were used for producing GP-specific hybridoma. Enzyme-linked immunosorbent assay, Western blot assay, flow cytometry, and virus-neutralizing assay were used to test the ability of monoclonal IgG antibodies to recognize GP and neutralize Ebola virus. RESULTS: Twelve hybridomas, the cell supernatants of which displayed GP-binding activity by enzyme-linked immunosorbent assay and the presence of both IgG heavy and light chains by Western blot assay, were chosen as a possible IgG producer. Among these, five clones (C36-1, D11-3, D12-1, D34-2, and E140-2) were identified to secrete monoclonal IgG antibodies. When the monoclonal IgG antibodies from the 5 clones were tested for their antigen specificity, they recognized GP in an antigen-specific and IgG dose-dependent manner. They remained reactive to GP at the lowest tested concentrations (1.953–7.8 ng/mL). In particular, IgG antibodies from clones D11-3, D12-1, and E140-2 recognized the native forms of GP expressed on the cell surface. These antibodies were identified as IgG1, IgG2a, or IgG2b kappa types and appeared to recognize the native forms of GP, but not the denatured forms of GP, as determined by Western blot assay. Despite their GP-binding activity, none of the IgG antibodies neutralized Ebola virus infection in vitro, suggesting that these antibodies are unable to neutralize Ebola virus infection. CONCLUSION: This study shows that the purified IgG antibodies from 5 clones (C36-1, D11-3, D12-1, D34-2, and E140-2) possess GP-binding activity but not Ebola virus-neutralizing activity.


Asunto(s)
Animales , Ratones , Anticuerpos , Formación de Anticuerpos , Western Blotting , Células Clonales , Ebolavirus , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Glicoproteínas , Fiebre Hemorrágica Ebola , Hibridomas , Inmunoglobulina G , Técnicas In Vitro , Sensibilidad y Especificidad , Bazo , Vacunas , Vacunas de ADN
2.
Clinical and Experimental Vaccine Research ; : 135-145, 2017.
Artículo en Inglés | WPRIM | ID: wpr-184071

RESUMEN

PURPOSE: The goal of this study was to investigate the utility of DNA vaccines encoding Ebola virus glycoprotein (GP) as a vaccine type for the production of GP-specific hybridomas and antibodies. MATERIALS AND METHODS: DNA vaccines were constructed to express Ebola virus GP. Mice were injected with GP DNA vaccines and their splenocytes were used for hybridoma production. Enzyme-linked immunosorbent assays (ELISAs), limiting dilution subcloning, antibody purification methods, and Western blot assays were used to select GP-specific hybridomas and purify monoclonal antibodies (MAbs) from the hybridoma cells. RESULTS: Twelve hybridomas, the cell supernatants of which displayed GP-binding activity, were selected by ELISA. When purified MAbs from 12 hybridomas were tested for their reactivity to GP, 11 MAbs, except for 1 MAb (from the A6-9 hybridoma) displaying an IgG2a type, were identified as IgM isotypes. Those 11 MAbs failed to recognize GP. However, the MAb from A6-9 recognized the mucin-like region of GP and remained reactive to the antigen at the lowest tested concentration (1.95 ng/mL). This result suggests that IgM-secreting hybridomas are predominantly generated by DNA vaccination. However, boosting with GP resulted in greater production of IgG-secreting hybridomas than GP DNA vaccination alone. CONCLUSION: DNA vaccination may preferentially generate IgM-secreting hybridomas, but boosting with the protein antigen can reverse this propensity. Thus, this protein boosting approach may have implications for the production of IgG-specific hybridomas in the context of the DNA vaccination platform. In addition, the purified monoclonal IgG antibodies may be useful as therapeutic antibodies for controlling Ebola virus infection.


Asunto(s)
Animales , Ratones , Anticuerpos , Anticuerpos Monoclonales , Formación de Anticuerpos , Western Blotting , Codificación Clínica , ADN , Ebolavirus , Ensayo de Inmunoadsorción Enzimática , Glicoproteínas , Fiebre Hemorrágica Ebola , Hibridomas , Inmunización , Inmunoglobulina G , Inmunoglobulina M , Vacunación , Vacunas de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA