Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Journal of Integrated Traditional and Western Medicine ; (12): 981-987, 2015.
Artículo en Chino | WPRIM | ID: wpr-237912

RESUMEN

<p><b>OBJECTIVE</b>To observe the protective effect of active fractions of Huanglian Jiedu Decoction (HJD) on primary cortical neuron injury after oxygen-glucose deprivation (OGD)/reperfusion (R) injury. Methods Using macroporous resin method, HJDFE30, HJDFE50, HJDFE75, and HJDFE95 with 30%, 50%, 75%, and 95% alcohol were respectively prepared. Then the content of active components in different HJD fractions was determined with reverse phase high-performance liquid chromatography (RP-HPLC). The OGD/R injury model was induced by sodium dithionite on primary cortical neurons in neonate rats. MTT assay was used to observe the effect of four fractions (HJDFE30, HJDFE50, HJDFE75, and HJDFE95) and seven index components of HJD on the neuron viability.</p><p><b>RESULTS</b>RP-HPLC showed active component(s) contained in HJDFE30 was geniposide; baicalin, palmatine, berberine, and wogonside contained in HJDFE50; baicalin, berberine, baicalein, and wogonin contained in HJDFE75. The neuron viability was decreased after OGD for 20 min and reperfusion for 1 h, (P <0. 01), and significantly increased after administered with HJD, HJDFE30, HJDFE50, and HJDFE75 (P <0. 05, P <0. 01). Geniposide, baicalin, baicalein, palmatine, wogonside, and wogonin could increase the cortical neuron viability (P <0. 05, P <0. 01).</p><p><b>CONCLUSIONS</b>HJDFE30, HJDFE50, and HJDFE75, as active fractions of HJD, had protective effect on primary cortical neuron injury after OGD/R. Furthermore, geniposide, baicalin, and baicalein were main active components of HJD.</p>


Asunto(s)
Animales , Ratas , Berberina , Alcaloides de Berberina , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos , Farmacología , Usos Terapéuticos , Flavanonas , Flavonoides , Glucosa , Metabolismo , Iridoides , Modelos Animales , Neuronas , Oxígeno , Metabolismo , Daño por Reperfusión , Quimioterapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA