Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 175-182, 2022.
Artículo en Chino | WPRIM | ID: wpr-940401

RESUMEN

ObjectiveTo explore the mechanism of Fangji Fulingtang in the treatment of acute kidney injury (AKI) induced by ischemia-reperfusion based on network pharmacology and experimental verification. MethodActive components of Fangji Fulingtang were retrieved from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and previous report and targets of these components were predicted by SwissTargetPrediction. The targets of AKI were searched from GeneCards, Online Mendelian Inheritance in Man (OMIM), the database of gene-disease associations (DisGeNET), and Therapeutic Target Database (TTD). Protein-protein interaction (PPI) network was constructed by STRING. Metascape was used for Gene Ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of core targets. Cytoscape was employed to construct the "medicinal-active component-target-disease" network and “active component-target-pathway” network. AutoDock was applied for molecular docking. Finally, animal experiment was carried out to validate the mechanism of Fangji Fulingtang in treatment of AKI. ResultA total of 137 active components and 858 targets of Fangji Fulingtang, 1 294 targets of AKI, and 267 targets of Fangji Fulingtang in the treatment of AKI were screened out. Phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), proto-oncogene tyrosine protein kinase (SRC), protein kinase B1 (Akt1), and mitogen-activated protein kinase 3 (MAPK3) were the key anti-AKI targets of Fangji Fulingtang, which were involved in 1 609 GO terms, particularly cell response to lipids, membrane rafts, and protein kinase activity, and 140 KEGG pathways such as PI3K/Akt signaling pathway, chemokine signaling pathway, and Toll-like receptor signaling pathway. Molecular docking showed that the core active components had strong binding affinity to the key targets. The hematoxylin and eosin (HE) staining results indicated that Fangji Fulingtang can significantly improve the pathological state and the serological results suggested that the levels of serum creatinine (SCr) and blood urea nitrogen (BUN) were significantly reduced. ConclusionThis study clarified the mechanism of Fangji Fulingtang in the treatment of AKI and found that Fangji Fulingtang had the multi-component, multi-target, and multi-pathway characteristics in the treatment of AKI. The result lays a foundation for further study of its specific mechanism.

2.
China Journal of Chinese Materia Medica ; (24): 704-711, 2018.
Artículo en Chino | WPRIM | ID: wpr-771679

RESUMEN

According to the previous results from transcriptome analysis of Ligustrum quihoui, a glycosyltransferase gene(xynzUGT) was cloned by rapid amplification of cDNA ends(RACE). The full length cDNA of xynzUGT was 1 598 bp, consisting of 66 bp 5'-UTR, 1 440 bp ORF and 92 bp 3'-UTR. The ORF encoded a 480 amino-acid protein(xynzUGT) with a molecular weight of 54 826.67 Da and isoelectric point of 5.82. The structure of enzyme was analyzed by using bioinformatics method, the results showed that the primary structure contained a highly conserved PSPG box of glycosyltransferase, the secondary structure included α helix(38%), sheet(12.1%) and random coil(49.9%), and tertiary structure was constructed by peptide chain folding to form two face-to-face domains(often referred to as a Rossmann domains), between which a substrate binding pocket is sandwiched. The phylogenetic tree analysis indicated that xynzUGT might catalyze glycosylation of phenylpropanoids, such as tyrosol. Further simulation experiment of molecular docking between enzyme and tyrosol showed that Gly138 and Ser285 located in the binding pocket interacted with tyrosol by hydrogen bonding. SDS-PAGE analysis exhibited that the prokaryotic expression system successfully expressed recombinant xynzUGT with molecular weight of 58 370.57 Da, but it exists in the form of non-soluble inclusion bodies. Using the molecular chaperone and enzyme co-expression method, the soluble expression was promoted to some extent. The above works laid the foundation for further studying on enzymatic reaction and clarifying the functional mechanism of enzyme.


Asunto(s)
Clonación Molecular , ADN Complementario , Glicosiltransferasas , Genética , Ligustrum , Genética , Simulación del Acoplamiento Molecular , Filogenia , Proteínas de Plantas , Genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA