Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Añadir filtros








Intervalo de año
1.
Experimental & Molecular Medicine ; : 646-652, 2011.
Artículo en Inglés | WPRIM | ID: wpr-155751

RESUMEN

Steroid sulfatase (STS) is responsible for the hydrolysis of aryl and alkyl steroid sulfates and has a pivotal role in regulating the formation of biologically active estrogens. STS may be considered a new promising drug target for treating estrogen-mediated carcinogenesis. However, the molecular mechanism of STS expression is not well-known. To investigate whether tumor necrosis factor (TNF)-alpha is able to regulate gene transcription of STS, we studied the effect of TNF-alpha on STS expression in PC-3 human prostate cancer cells. RT-PCR and Western blot analysis showed that TNF-alpha significantly induced the expression of STS mRNA and protein in a concentration- and time-dependent manner. Treatment with TNF-alpha resulted in a strong increase in the phosphorylation of Akt on Ser-473 and when cells were treated with phosphatidylinositol (PI) 3-kinase inhibitors such as LY294002 or wortmannin, or Akt inhibitor (Akt inhibitor IV), induction of STS mRNA expression by TNF-alpha was significantly prevented. Moreover, activation of Akt1 by expressing the constitutively active form of Akt1 increased STS expression whereas dominant-negative Akt suppressed TNF-alpha-mediated STS induction. We also found that TNF-alpha is able to increase STS mRNA expression in other human cancer cells such as LNCaP, MDA-MB-231, and MCF-7 as well as PC-3 cells. Taken together, our results strongly suggest that PI 3-kinase/Akt activation mediates induction of human STS gene expression by TNF-alpha in human cancer cells.


Asunto(s)
Humanos , Masculino , Western Blotting , Técnica del Anticuerpo Fluorescente , Fosfatidilinositol 3-Quinasa/genética , Fosforilación/efectos de los fármacos , Neoplasias de la Próstata/genética , Proteínas Proto-Oncogénicas c-akt/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Recombinantes/genética , Transducción de Señal , Esteril-Sulfatasa/genética , Células Tumorales Cultivadas , Factor de Necrosis Tumoral alfa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA