Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Biomolecules & Therapeutics ; : 481-486, 2018.
Artículo en Inglés | WPRIM | ID: wpr-717252

RESUMEN

Cosmetics are primarily applied to the skin; therefore, the association of cosmetic dyes with skin diseases or inflammation is a topic of great interest. Thymic stromal lymphopoietin (TSLP) is an interleukin 7-like cytokine that activates dendritic cells to promote Th2 inflammatory immune responses. TSLP is highly expressed in keratinocytes under inflammatory conditions, which suggests that it may play a critical role in the development of skin diseases, such as atopic dermatitis. Therefore, we investigated whether cosmetic dyes influenced the production of TSLP by keratinocytes. Phloxine O, also known as D&C Red No.27, is one of the most common red synthetic pigments and is widely used in colored cosmetics. Our results showed that Phloxine O downregulated phorbol 12-myristate 13-acetate-induced production of TSLP in a murine keratinocyte cell line (PAM212). Phloxine O also suppressed TSLP expression in KCMH-1 cells, which are mouse keratinocytes that constitutively produce high levels of TSLP. To investigate the in vivo effects of Phloxine O, we induced TSLP expression in mouse ear skin by topically applying MC903, a vitamin D3 analogue that is a well-known inducer of atopic dermatitis-like symptoms. Topical application of Phloxine O prevented MC903-induced TSLP production in mouse ear skin, attenuated the acute dermatitis-like symptoms and decreased serum IgE and histamine levels in mice. Suppression of TSLP expression by Phloxine O correlated with reduced expression of OX40 ligand and Th2 cytokines in mouse ear skin. Our results showed that Phloxine O may be beneficial to prevent dermatitis by suppressing the expression of TSLP and Th2 cytokines in skin.


Asunto(s)
Animales , Femenino , Ratones , Línea Celular , Colecalciferol , Colorantes , Citocinas , Células Dendríticas , Dermatitis , Dermatitis Atópica , Dilatación y Legrado Uterino , Oído , Histamina , Inmunoglobulina E , Inflamación , Interleucinas , Queratinocitos , Ligando OX40 , Piel , Enfermedades de la Piel
2.
Biomolecules & Therapeutics ; : 434-441, 2015.
Artículo en Inglés | WPRIM | ID: wpr-36716

RESUMEN

Histone deacetylase (HDAC) inhibitors are considered novel agents for cancer chemotherapy. We previously investigated MHY219, a new HDAC inhibitor, and its potent anticancer activity in human prostate cancer cells. In the present study, we evaluated MHY219 molecular mechanisms involved in the regulation of prostate cancer cell migration. Similar to suberanilohydroxamic acid (SAHA), MHY219 inhibited HDAC1 enzyme activity in a dose-dependent manner. MHY219 cytotoxicity was higher in LNCaP (IC50=0.67 muM) than in DU145 cells (IC50=1.10 muM) and PC3 cells (IC50=5.60 muM) after 48 h of treatment. MHY219 significantly inhibited the HDAC1 protein levels in LNCaP and DU145 cells at high concentrations. However, inhibitory effects of MHY219 on HDAC proteins levels varied based on the cell type. MHY219 significantly inhibited LNCaP and DU145 cells migration by down-regulation of matrix metalloprotease-1 (MMP-1) and MMP-2 and induction of tissue inhibitor of metalloproteinases-1 (TIMP-1). These results suggest that MHY219 may potentially be used as an anticancer agent to block cancer cell migration through the repression of MMP-1 and MMP-2, which is related to the reduction of HDAC1.


Asunto(s)
Humanos , Movimiento Celular , Regulación hacia Abajo , Quimioterapia , Inhibidores de Histona Desacetilasas , Histona Desacetilasas , Histonas , Metaloproteinasas de la Matriz , Próstata , Neoplasias de la Próstata , Represión Psicológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA