Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros








Intervalo de año
1.
Indian J Pathol Microbiol ; 2016 Apr-June 59(2): 180-184
Artículo en Inglés | IMSEAR | ID: sea-179462

RESUMEN

Context: In recent years, nonlactose fermenting (NLF) Escherichia coli have been increasingly isolated in the microbiology laboratory, but their clinical significance has not yet been clearly elucidated. Aims: To characterize the lactose fermenting (LF) and NLF isolates on the basis of their virulence factors, phylogenetic background, and drug resistance property. Settings and Design: This descriptive study was carried out in a multi‑specialty tertiary care hospital. Subjects and Methods: Three hundred nonrepeat E. coli isolates from inpatients were studied. Isolates were differentiated as LF and NLF on the basis of colony characteristics on MacConkey’s agar. Possession of virulence and drug resistance genes was determined by multiplex polymerase chain reaction (PCR). Phylogenetic analysis was performed by triplex PCR methods. Antibiotic sensitivity testing was performed by disk diffusion method. Results: Of 300 isolates 39 (13%) were NLF isolates. Maximum number of NLF isolates belonged to phylogroups B2 and D when compared with LF isolates. The incidence of iutA, hlyA, and neuC genes were significantly higher in NLF isolates. The presence of drug resistance genes such as AmpC gene, SHV, and CTXM were higher in LF isolates. Conclusions: LF isolates demonstrated a higher antimicrobial resistance and NLF isolates possessed higher virulence properties. The microbiology laboratory should report lactose fermentation profile as it may help the physician to initiate appropriate treatment.

2.
Artículo en Inglés | IMSEAR | ID: sea-156176

RESUMEN

Context: Escherichia coli is a major cause of bloodstream infections and death due to sepsis. Bacteremic isolates harbor a signifi cantly greater repertoire of virulence factors (VFs) in contrast with commensal E. coli isolates. Aims: The aim was to determine the relationships between E. coli VFs, phylogenetic groups, and their clinical importance. Settings and Design: This descriptive study was carried out in a multi-specialty tertiary care hospital. Materials and Methods: Escherichia coli isolates from consecutive episodes of bacteremia in 100 patients were screened for their VFs, phylogenetic group, and their effect on patient’s clinical outcome. Virulence genes of all isolates were determined by multiplex polymerase chain reaction (PCR). Phylogenetic analysis was performed by triplex PCR methods. Estimation of risk of death was calculated using APACHE score II calculator. Results: Of the 100 patients, the most common predisposing factors were diabetes (42%), followed by carcinoma (23%). On analysis of the VF genes of the isolates, a majority of strains (88%) were possessing the fi mH gene followed by iutA (76%), papC (44%), cnf1 (16%), hlyA (16%) and neuC (5%) respectively. Phylogenetic analysis revealed that 25 (25%) isolates belonged to phylogroup A, 8(8%) strains to group B1, 30 (30%) were from group B2 and 37 (37%) were from group D. The incidence of iutA gene was signifi cant in higher APACHE II score group. Conclusions: Our fi ndings indicate that virulent as well as commensal strains are capable of causing sepsis. Host related predisposing factors, adherence factors, and iron uptake are essential for the survival of the sepsis inducing strains.

3.
Indian J Biochem Biophys ; 2014 Dec ; 51(6): 520-526
Artículo en Inglés | IMSEAR | ID: sea-156532

RESUMEN

The endocrine control of oocyte maturation in fish and amphibians has proved to be a valuable model for investigating the rapid and non-genomic steroid actions at the cell surface. Considerable progress has made over the last decade in elucidating signaling pathways in steroid-induced oocyte maturation. In addition to steroids, various growth factors have also been reported to be involved in this process and progress being made to elucidate their mechanism of actions. Exposure of fully-grown oocytes to steroids or growth factors (insulin/IGFs) initiates various signaling cascade, leading to formation and activation of maturation-promoting factor (MPF), a key enzyme that catalyzes entry into M-phase of meiosis I and II. Whereas the function of MPF in promoting oocyte maturation is ubiquitous, there are differences in signaling pathways between steroids- and growth factors-induced oocyte maturation in amphibian and fish. Here, we have reviewed the recent advances on the signaling pathways in insulin- and IGF-I-induced oocyte maturation in these two groups of non-mammalian vertebrates. New findings demonstrating the involvement of PI3 kinase and MAP kinase in induction of oocyte maturation by insulin and IGF-I are presented.


Asunto(s)
Anfibios/crecimiento & desarrollo , Anfibios/metabolismo , Animales , Femenino , Peces/crecimiento & desarrollo , Peces/metabolismo , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Modelos Biológicos , Oocitos/citología , Oocitos/fisiología , Oogénesis/fisiología , Transducción de Señal/fisiología
4.
Indian J Pathol Microbiol ; 2014 Apr-Jun 57 (2): 255-258
Artículo en Inglés | IMSEAR | ID: sea-156024

RESUMEN

Context: Plasmid mediated AmpC (pAmpC) β-lactamase producing Escherichia coli are an emerging problem worldwide as they are now exhibiting resistance to multiple classes of antibiotics and are a major cause of therapeutic failure. Aims: The aim of this study was to characterize pAmpC β-lactamase producing extraintestinal E. coli, their phylogenetic distribution, resistance pattern, treatment options, and impact on patient’s clinical outcome. Settings and Design: This descriptive study was carried out in a multi-specialty tertiary care hospital. Materials and Methods: A total of 300 clinically signifi cant, non-repeat isolates were studied. AmpC disk test was used for phenotypic AmpC-β- lactamase detection. Molecular types of pAmpC were determined by a multiplex polymerase chain reaction (PCR). Phylogenetic analysis was performed by triplex PCR methods. Metallo-beta-lactamase (MBL) detection was done by E test. Antibiogram, treatment, and clinical outcome were collected in a structured proforma. Results: Although 95 isolates (32%) were phenotypically positive for AmpC, PCR detected CIT type of AmpC gene in only 37 isolates. Majority of strains were from phylogroup A (85%) and B1 (58%) which are considered as commensal groups. Co-production of ESBL’s was observed in 33 strains and 5 strains were found to be MBL producers. Most widely prescribed antibiotics were 3rd generation cephalosporins (30%), carbapenems (19%) and aminoglycosides (16%). Conclusions: Plasmid mediated AmpC producing isolates were found to exhibit a high degree of drug resistance, and they mainly belonged to commensal strains possibly due to misuse of antibiotics. Proper antibiotic policy is required to limit the spread of pAmpC producers or else it will lead to a therapeutic dead end in the near future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA