RESUMEN
Titanium dioxide nanotubes (TiO2) have been applied to enhance the mechanical properties of dental materials. Yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) has been increasingly used in dentistry. Aside from its optimal clinical results, Y-TZP is prone to failures related to insufficient thickness of the fixed prostheses connector and debonding due to its difficult adhesion. The purpose of this study is to evaluate the effect of the addition of different concentrations of TiO2 to YTZP in its mechanical properties and microstructure, and also to evaluate the influence of these nanotubes on the bond strength when added to the ceramic or to the resin cement. To evaluate that, the described purposes were divided in two different papers. Paper 1 describes the tests of biaxial flexural strength, fractography qualitative analysis in scanning electron microscopy (SEM), microstructure evaluation in field emission-SEM and X-ray diffraction. Groups evaluated were commercial YTZP (Ivoclar Vivadent) (ZC) and an experimental Y-TZP with different blends of nanotubes [0 (Z0), 1 (Z1), 2 (Z2), and 5% (Z5), in volume]. In paper 2 shear bond strength test is described. It was carried out with the following groups: commercial YTZP (Ivoclar Vivadent) (ZC) and an experimental Y-TZP with different blends of nanotubes [0 (Z0), 1 (Z1), 2 (Z2), and 5% (Z5), in volume] bonded to the resin cement Panavia F2.0; and commercial Y-TZP bonded to resin cement RelyX U200 added with different blends of nanotubes in two curing methods dual-cured [0 (DC), 0.3 (D03), 0.6 (D06) and 0.9% (D09) of nanotubes in weigth] or self-cured [0 (SC), 0.3 (S03), 0.6 (S06) and 0.9% (S09) of nanotubes in weigth]. Values of flexural strength and shear bond strength were subjected to ANOVA and Tukey (=0.05). Flexural strength values were also subjected to Weibull statistics. Grain sizes values were subjected to Kruskal-Wallis and Dunn tests (=0.05). The flexural strength results were: ZC 896.73±122.70; Z0 577.67±62.26; Z1 477.32±75.65; Z2 492.25±63.19; Z5 437.18±53.55. The Weibull modulus results found were: ZC 7.9; Z0 11.2, Z1 8.7; Z2 8.1; Z5 9.3. Results showed that experimental Y-TZP presented lower flexural strength values than commercial one, but the first presented better Weibull modulus (m). Experimental Y-TZP also presented good microstructure, comparable to commercial Y-TZP, with very similar grain sizes. Nanotubes addition to Y-TZP led to lower flexural strength, although higher m than commercial ceramic. Pores containing Ti were observed in Y-TZP as the nanotubes concentration raised. Shear bond strength results found were, from higher to lower values: Z5 6.46±3.36; DC 6.17±0.87; D03 5.74±1.70; S03 5.73±1.71; Z1 5.16±2.62; D06 4.82±1.06; D09 4.75±1.43; SC 4.73±1.43; S09 4.61±0.85; S06 4.51±1.87; ZC 3.70±1.82; Z0 -3.33±2.05; Z2 2.94±1.38. Shear bond strength was also influenced by nanotubes addition, either in the ceramic or in the cement, although not linearly. Y-TZP added of 5% of TiO2 nanotubes presented the highest bond strength, although with no significant difference from most groups. Group Z1 was probably the group that presented the best combination of flexural strength, m, microstructure and bond strength. More studies of other properties could be carried out with this group.(AU)
Nanotubos de dióxido de titânio (TiO2) tem sido utilizados para melhorar as propriedades mecânicas de materiais odontológicos. Zircônica tetragonal policristalina estabilizada por ítria (Y-TZP) tem sido amplamente utilizada na Odontologia. Apesar de seus excelentes resultados clínicos, a Y-TZP é suscetível a falhas relacionadas à espessura insuficiente do conector da prótese fixa e a soltura da restauração devido à adesão deficiente. O objetivo desse trabalho é avaliar o efeito da adição de diferentes concentrações de nanotubos de TiO2 à Y-TZP nas suas propriedades mecânicas e microestrutura, além de avaliar a influência na resistência de união da adição desses nanotubos na cerâmica ou no cimento resinoso. Para isso, os objetivos descritos foram divididos em dois artigos diferentes. O artigo 1 descreve os testes de resistência flexural biaxial, análise fractográfica qualitativa em microscopia eletrônica de varredura (MEV), avaliação de microestrutura em MEV de emissão de campo e difração de raios-X. Os grupos avaliados foram: Y-TZP comercial (Ivoclar Vivadent) (ZC) e Y-TZP experimental com diferentes concentrações de nanotubos [0 (Z0), 1 (Z1), 2 (Z2), e 5% (Z5), em volume]. No artigo 2 está descrito o teste de resistência ao cisalhamento que foi realizado com os seguintes grupos: Y-TZP comercial (ZC) e Y-TZP experimental com diferentes concentrações de nanotubos [0 (Z0), 1 (Z1), 2 (Z2), e 5% (Z5), em volume] aderidas ao cimento Panavia F2.0; e Y-TZP comercial aderida ao cimento resinoso RelyX U200 com adição de diferentes concentrações de nanotubos em dois métodos de polimerização: dual [0 (DC), 0,3 (D03), 0,6 (D06) e 0,9% (D09) de nanotubos em peso] ou auto [0 (SC), 0,3 (S03), 0,6 (S06) e 0,9% (S09) de nanotubos em peso]. Os valores de resistência flexural e resistência ao cisalhamento foram submetidos aos testes de ANOVA e Tukey (=0,05). A resistência flexural também passou por análise de Weibull. Os valores de tamanho de grãos foram submetidos a testes de Kruskal-Wallis e Dunn (=0,05). Os resultados de resistência flexural encontrados foram: ZC 896,73±122,70; Z0 577,67±62,26; Z1 477,32±75,65; Z2 492,25±63,19; Z5 437,18±53,55. Os resultados de módulo de Weibull encontrados foram: ZC - 7,9; Z0 - 11,2; Z1 - 8,7; Z2 - 8,1; Z5 - 9,3. Os resultados mostraram que a Y-TZP experimental apresentou menores valores de resistência flexural do que a cerâmica comercial, mas a primeira apresentou maior módulo de Weibull (m). A Y-TZP experimental apresentou boa microestrutura, comparável à Y-TZP comercial, com tamanhos de grão muito semelhantes. A adição de nanotubos à Y-TZP levou a menor resistência flexural, porém maior m que a cerâmica comercial. Poros contendo Ti foram observados na Y-TZP conforme a concentração de nanotubos aumentou. Os resultados de resistência ao cisalhamento foram, do maior para o menor: Z5 - 6,46±3,36; DC - 6,17±0,87; D03 - 5,74±1,70; S03 - 5,73±1,71; Z1 - 5,16±2,62; D06 - 4,82±1,06; D09 - 4,75±1,43; SC - 4,73±1,43; S09 - 4,61±0,85; S06 - 4,51±1,87; ZC - 3,70±1,82; Z0 - 3,33±2,05; Z2 - 2,94±1,38. A resistência ao cisalhamento também foi influenciada pela adição de nanotubos, tanto na cerâmica quanto no cimento, porém não linearmente. A Y-TZP adicionada de 5% de nanotubos de TiO2 apresentou maior resistência de união, porém sem diferença estatística da maioria dos grupos. O grupo Z1 foi provavelmente o grupo que apresentou a melhor combinação de resistência flexural, m, microestrutura e resistência de união. Mais estudos de outras propriedades podem ser realizados com o mesmo.(AU)