Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Asian Pacific Journal of Tropical Medicine ; (12): 792-797, 2015.
Artículo en Chino | WPRIM | ID: wpr-951660

RESUMEN

Objective: To investigate the effects of Gastrodiae rhizoma, a dried root of Gastrodia elata Blume, on proliferation and differentiation of human NSCs derived from embryonic stem cells. Methods: A 70% ethanol extract of Gastrodiae rhizoma (EEGR) was estimated with 4-hydroxybenzyl alcohol as a representative constituent by HPLC. Results: MTT assay showed that the treatment with EEGR increased the viability of NSCs in growth media. Compared to control, EEGR increased the number of dendrites and denritic spines extended from a differentiated NSC. Whereas EEGR decreased the mRNA expression of Nestin, it increased that of Tuj1 and MAP2 in NSCs grown in differentiation media. Immunocytochemical analysis using confocal microscopy also revealed the increased expression of MAP2 in dendrites of EEGR-treated NSCs. Furthermore, EEGR decreased mRNA expression of Sox2 in NSCs grown even in growth media. Conclusions: In conclusion, our study demonstrates for the first time that EEGR induced proliferation and neuronal differentiation of NSCs, suggesting its potential benefits on NSC-based therapies and neuroregeneration in various neurodegenerative diseases and brain injuries.

2.
Asian Pacific Journal of Tropical Medicine ; (12): 792-797, 2015.
Artículo en Inglés | WPRIM | ID: wpr-820470

RESUMEN

OBJECTIVE@#To investigate the effects of Gastrodiae rhizoma, a dried root of Gastrodia elata Blume, on proliferation and differentiation of human NSCs derived from embryonic stem cells.@*METHODS@#A 70% ethanol extract of Gastrodiae rhizoma (EEGR) was estimated with 4-hydroxybenzyl alcohol as a representative constituent by HPLC.@*RESULTS@#MTT assay showed that the treatment with EEGR increased the viability of NSCs in growth media. Compared to control, EEGR increased the number of dendrites and denritic spines extended from a differentiated NSC. Whereas EEGR decreased the mRNA expression of Nestin, it increased that of Tuj1 and MAP2 in NSCs grown in differentiation media. Immunocytochemical analysis using confocal microscopy also revealed the increased expression of MAP2 in dendrites of EEGR-treated NSCs. Furthermore, EEGR decreased mRNA expression of Sox2 in NSCs grown even in growth media.@*CONCLUSIONS@#In conclusion, our study demonstrates for the first time that EEGR induced proliferation and neuronal differentiation of NSCs, suggesting its potential benefits on NSC-based therapies and neuroregeneration in various neurodegenerative diseases and brain injuries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA