Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Rev. bras. farmacogn ; 28(3): 282-288, May-June 2018. tab, graf
Artículo en Inglés | LILACS | ID: biblio-958878

RESUMEN

ABSTRACT The objective of this study was to perform preliminary screening of phytochemical compounds and quantification of major phenolics and flavonoid markers in Italian ryegrass extract using HPLC-DAD. Previously, LC-MS analysis has identified different phenolic acids, including caffeic acid, ferulic acid, p-coumaric acid, chlorogenic acid, dihydroxy benzoic acid, propyl gallate, catechin, and six flavonoids including rutin hydroxide, luteolin, kaemferol, vitexin, narcissoside, and myricetin from Italian ryegrass extract. In the present study, Italian ryegrass silage powder was extracted with ethanol: water for 20 min at 90 °C. The extract targeted optimum yield of phenolic acids and flavonoids. Crude phenolic acid and flavonoids were then purified by solid phase extraction method. Purified fractions were then injected into HPLC with a diode-array detector. Quantified concentrations of isolated phenolic acids and flavonoids ranged from 125 to 220 µg/g dry weight. Limits of detection and limits of quantification for all standards (unknown compounds) ranged from 0.38 to 1.71 and 0.48 to 5.19 µg/g dry weight, respectively. Obtained values were compared with previous literatures, indicating that our HPLC-DAD quantification method showed more sensitivity. This method showed better speed, accuracy, and effectiveness compared to previous reports. Furthermore, this study could be very useful for developing phenolic acids and flavonoids from compositions in Italian ryegrass silage feed for pharmaceutical applications and ruminant animals in livestock industries.

2.
Biol. Res ; 49: 1-11, 2016. ilus, graf
Artículo en Inglés | LILACS | ID: biblio-950864

RESUMEN

BACKGROUND: From ancient times, marine algae have emerged as alternative medicine and foods, contains the rich source of natural products like proteins, vitamins, and secondary metabolites, especially Chlorella vulgaris (C. vulgaris) contains numerous anti-inflammatory, antioxidants and wound healing substances. Type 2 diabetes mellitus is closely associated with adipogenesis and their factors. Hence, we aimed to investigate the chemical constituents and adipo-genic modulatory properties of C. vulgaris in 3T3-L1 pre-adipocytes. RESULTS: We analysed chemical constituents in ethanolic extract of C. vulgaris (EECV) by LC-MS. Results revealed that the EECV contains few triterpenoids and saponin compounds. Further, the effect of EECV on lipid accumulation along with genes and proteins expressions which are associated with adipogenesis and lipogenesis were evaluated using oil red O staining, qPCR and western blot techniques. The data indicated that that EECV treatment increased differentiation and lipid accumulation in 3T3-L1 cells, which indicates positive regulation of adipogenic and lipogenic activity. These increases were associated with up-regulation of PPAR-γ2, C/EBP-α, adiponectin, FAS, and leptin mRNA and protein expressions. Also, EECV treatments increased the concentration of glycerol releases as compared with control cells. Troglitazone is a PPAR-γ agonist that stimulates the PPAR-y2, adiponectin, and GLUT-4 expressions. Similarly, EECV treatments significantly upregulated PPAR-γ, adiponectin, GLUT-4 expressions and glucose utilization. Further, EECV treatment decreased AMPK-α expression as compared with control and metformin treated cells. CONCLUSION: The present research findings confirmed that the EECV effectively modulates the lipid accumulation and differentiation in 3T3-L1 cells through AMPK-α mediated signalling pathway.


Asunto(s)
Animales , Ratones , Algas Marinas/química , Extractos Vegetales/farmacología , Células 3T3-L1/efectos de los fármacos , Chlorella vulgaris/química , Factores de Tiempo , Regulación hacia Abajo , Expresión Génica , Diferenciación Celular/efectos de los fármacos , Regulación hacia Arriba , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células 3T3-L1/fisiología , PPAR gamma/análisis , PPAR gamma/efectos de los fármacos , PPAR gamma/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Adiponectina/análisis , Adiponectina/metabolismo , Transportador de Glucosa de Tipo 4/análisis , Transportador de Glucosa de Tipo 4/efectos de los fármacos , Transportador de Glucosa de Tipo 4/metabolismo , Proteínas Quinasas Activadas por AMP/análisis , Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Glucosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA