RESUMEN
Colorectal cancer (CRC) and hepatocellular carcinoma (HCC) are the second and third most common causes of death by cancer, respectively. The etiologies of the two cancers are either infectious insult or due to chronic use of alcohol, smoking, diet, obesity and diabetes. Pathological changes in the composition of the gut microbiota that lead to intestinal inflammation are a common factor for both HCC and CRC. However, the gut microbiota of the cancer patient evolves with disease pathogenesis in unique ways that are affected by etiologies and environmental factors. In this review, we examine the changes that occur in the composition of the gut microbiota across the stages of the HCC and CRC. Based on the idea that the gut microbiota are an additional "lifeline" and contribute to the tumor microenvironment, we can observe from previously published literature how the microbiota can cause a shift in the balance from normal → inflammation → diminished inflammation from early to later disease stages. This pattern leads to the hypothesis that tumor survival depends on a less pro-inflammatory tumor microenvironment. The differences observed in the gut microbiota composition between different disease etiologies as well as between HCC and CRC suggest that the tumor microenvironment is unique for each case.
RESUMEN
The gut microbiota is profoundly involved in glucose and lipid metabolism, in part by regulating bile acid (BA) metabolism and affecting multiple BA-receptor signaling pathways. BAs are synthesized in the liver by multi-step reactions catalyzed via two distinct routes, the classical pathway (producing the 12α-hydroxylated primary BA, cholic acid), and the alternative pathway (producing the non-12α-hydroxylated primary BA, chenodeoxycholic acid). BA synthesis and excretion is a major pathway of cholesterol and lipid catabolism, and thus, is implicated in a variety of metabolic diseases including obesity, insulin resistance, and nonalcoholic fatty liver disease. Additionally, both oxysterols and BAs function as signaling molecules that activate multiple nuclear and membrane receptor-mediated signaling pathways in various tissues, regulating glucose, lipid homeostasis, inflammation, and energy expenditure. Modulating BA synthesis and composition to regulate BA signaling is an interesting and novel direction for developing therapies for metabolic disease. In this review, we summarize the most recent findings on the role of BA synthetic pathways, with a focus on the role of the alternative pathway, which has been under-investigated, in treating hyperglycemia and fatty liver disease. We also discuss future perspectives to develop promising pharmacological strategies targeting the alternative BA synthetic pathway for the treatment of metabolic diseases.
RESUMEN
Diabetes is a widespread, rapidly increasing metabolic disease that is driven by hyperglycemia. Early glycemic control is of primary importance to avoid vascular complications including development of retinal disorders leading to blindness, end-stage renal disease, and accelerated atherosclerosis with a higher risk of myocardial infarction, stroke and limb amputations. Even after hyperglycemia has been brought under control, "metabolic memory," a cluster of irreversible metabolic changes that allow diabetes to progress, may persist depending on the duration of hyperglycemia. Manipulation of bile acid (BA) receptors and the BA pool have been shown to be useful in establishing glycemic control in diabetes due to their ability to regulate energy metabolism by binding and activating nuclear transcription factors such as farnesoid X receptor (FXR) in liver and intestine as well as the G-protein coupled receptor, TGR5, in enteroendocrine cells and pancreatic β-cells. The downstream targets of BA activated FXR, FGF15/21, are also important for glucose/insulin homeostasis. In this review we will discuss the effect of BAs on glucose and lipid metabolism and explore recent research on establishing glycemic control in diabetes through the manipulation of BAs and their receptors in the liver, intestine and pancreas, alteration of the enterohepatic circulation, bariatric surgery and alignment of circadian rhythms.