Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Journal of Veterinary Science ; : 89-96, 2016.
Artículo en Inglés | WPRIM | ID: wpr-110761

RESUMEN

Recent developments in genome editing technology using meganucleases demonstrate an efficient method of producing gene edited pigs. In this study, we examined the effectiveness of the transcription activator-like effector nuclease (TALEN) system in generating specific mutations on the pig genome. Specific TALEN was designed to induce a double-strand break on exon 9 of the porcine α1,3-galactosyltransferase (GGTA1) gene as it is the main cause of hyperacute rejection after xenotransplantation. Human decay-accelerating factor (hDAF) gene, which can produce a complement inhibitor to protect cells from complement attack after xenotransplantation, was also integrated into the genome simultaneously. Plasmids coding for the TALEN pair and hDAF gene were transfected into porcine cells by electroporation to disrupt the porcine GGTA1 gene and express hDAF. The transfected cells were then sorted using a biotin-labeled IB4 lectin attached to magnetic beads to obtain GGTA1 deficient cells. As a result, we established GGTA1 knockout (KO) cell lines with biallelic modification (35.0%) and GGTA1 KO cell lines expressing hDAF (13.0%). When these cells were used for somatic cell nuclear transfer, we successfully obtained live GGTA1 KO pigs expressing hDAF. Our results demonstrate that TALEN-mediated genome editing is efficient and can be successfully used to generate gene edited pigs.


Asunto(s)
Animales , Humanos , Antígenos CD55/genética , Línea Celular , Roturas del ADN de Doble Cadena , Exones/genética , Galactosiltransferasas/genética , Edición Génica/veterinaria , Técnicas de Inactivación de Genes , Técnicas de Transferencia Nuclear , Porcinos , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética
2.
Journal of Veterinary Science ; : 15-20, 2013.
Artículo en Inglés | WPRIM | ID: wpr-142096

RESUMEN

Quercetin is a plant-derived flavonoid found in fruits or vegetables that has antioxidant properties and acts as a free radical scavenger. We investigated the effects of quercetin on porcine oocyte nuclear maturation and embryonic development after parthenogenetic activation. We then evaluated the antioxidant activities of quercetin by measuring reactive oxygen species (ROS) levels in matured oocytes. Immature oocytes were untreated or treated with 1, 10, and 50 microg/mL quercetin during in vitro maturation (IVM). Quercetin treatment did not improve oocyte nuclear maturation, but significantly higher blastocyst rates (p < 0.05) of parthenogenetically activated oocytes were achieved when the IVM medium was supplemented with an adequate concentration of quercetin (1 microg/mL). However, cleavage rates and blastocyst cell numbers were not affected. Oocytes treated with 1 or 10 microg/mL quercetin had significantly lower (p < 0.05) levels of ROS than the control and group treated with the highest concentration of quercetin (50 microg/mL). Moreover, this highest concentration was detrimental to oocyte nuclear maturation and blastocyst formation. Based on our findings, we concluded that exogenous quercetin reduces ROS levels during oocyte maturation and is beneficial for subsequent embryo development.


Asunto(s)
Animales , Antioxidantes/administración & dosificación , Relación Dosis-Respuesta a Droga , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Oocitos/citología , Quercetina/administración & dosificación , Especies Reactivas de Oxígeno/metabolismo , Porcinos
3.
Journal of Veterinary Science ; : 15-20, 2013.
Artículo en Inglés | WPRIM | ID: wpr-142093

RESUMEN

Quercetin is a plant-derived flavonoid found in fruits or vegetables that has antioxidant properties and acts as a free radical scavenger. We investigated the effects of quercetin on porcine oocyte nuclear maturation and embryonic development after parthenogenetic activation. We then evaluated the antioxidant activities of quercetin by measuring reactive oxygen species (ROS) levels in matured oocytes. Immature oocytes were untreated or treated with 1, 10, and 50 microg/mL quercetin during in vitro maturation (IVM). Quercetin treatment did not improve oocyte nuclear maturation, but significantly higher blastocyst rates (p < 0.05) of parthenogenetically activated oocytes were achieved when the IVM medium was supplemented with an adequate concentration of quercetin (1 microg/mL). However, cleavage rates and blastocyst cell numbers were not affected. Oocytes treated with 1 or 10 microg/mL quercetin had significantly lower (p < 0.05) levels of ROS than the control and group treated with the highest concentration of quercetin (50 microg/mL). Moreover, this highest concentration was detrimental to oocyte nuclear maturation and blastocyst formation. Based on our findings, we concluded that exogenous quercetin reduces ROS levels during oocyte maturation and is beneficial for subsequent embryo development.


Asunto(s)
Animales , Antioxidantes/administración & dosificación , Relación Dosis-Respuesta a Droga , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Oocitos/citología , Quercetina/administración & dosificación , Especies Reactivas de Oxígeno/metabolismo , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA