Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Medical Journal ; (24): 740-745, 2011.
Artículo en Inglés | WPRIM | ID: wpr-321427

RESUMEN

<p><b>BACKGROUND</b>Traumatic brain injury (TBI) often causes cognitive deficits and remote symptomatic epilepsy. Hippocampal regional excitability is associated with the cognitive function. However, little is known about injury-induced neuronal loss and subsequent alterations of hippocampal regional excitability. The present study was designed to determine whether TBI may impair the cellular circuit in the hippocampus.</p><p><b>METHODS</b>Forty male Wistar rats were randomized into control (n = 20) and TBI groups (n = 20). Long-term potentiation, extracellular input/output curves, and hippocampal parvalbumin-immunoreactive and cholecystokinin-immunoreactive interneurons were compared between the two groups.</p><p><b>RESULTS</b>TBI resulted in a significantly increased excitability in the dentate gyrus (DG), but a significantly decreased excitability in the cornu ammonis 1 (CA1) area. Using design-based stereological injury procedures, we induced interneuronal loss in the DG and CA3 subregions in the hippocampus, but not in the CA1 area.</p><p><b>CONCLUSIONS</b>TBI leads to the impairment of hippocampus synaptic plasticity due to the changing of interneuronal interaction. The injury-induced disruption of synaptic efficacy within the hippocampal circuit may underlie the observed cognitive deficits and symptomatic epilepsy.</p>


Asunto(s)
Animales , Masculino , Ratas , Lesiones Encefálicas , Hipocampo , Potenciación a Largo Plazo , Plasticidad Neuronal , Fisiología , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA