Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Journal of Biotechnology ; (12): 1312-1323, 2021.
Artículo en Chino | WPRIM | ID: wpr-878633

RESUMEN

Dihydroflavanol-4-reductase (Dfr) is a key enzyme that regulates the synthesis of anthocyanin and proanthocyanidin in the flavonoid biosynthesis pathway. To investigate the difference of dfr gene in Scutellaria baicalensis Georgi with different colors in the same ecological environment, three complete full-length sequences of dfr gene were cloned from the cDNA of S. baicalensis with white, purple-red and purple colors using homologous cloning and RACE techniques. The three genes were named Sbdfr1, Sbdfr2 and Sbdfr3, respectively, and their corresponding structures were analyzed. The results showed that all three Dfr proteins have highly conserved NADPH binding sites and substrate-specific binding sites. Phylogenetic analysis showed that they are closely related to that of the known S. viscidula (ACV49882.1). Analysis of key structural domains and 3D models revealed differences in the catalytically active regions on the surface of all three Dfr proteins, and their unique structural characteristics may provide favorable conditions for studying the substrate specificity of different Dfr proteins. qRT-PCR analysis shows that dfr was expressed at different level in all tissues except the roots of S. baicalensis in full-bloom. During floral development, the expression level of dfr in white and purple-flowered Scutellaria showed an overall upward trend. In purple-red-flowered Scutellaria, the expression first slowly increased, followed by a decrease, and then rapidly increased to the maximum. This research provides a theoretical basis for further exploring the mechanism and function of Dfr substrate selectivity, and are of great scientific value for elucidating the molecular mechanism of floral color variation in S. baicalensis.


Asunto(s)
Antocianinas , Clonación Molecular , Color , Filogenia , Scutellaria baicalensis/genética
2.
Chinese Journal of Biotechnology ; (12): 949-958, 2020.
Artículo en Chino | WPRIM | ID: wpr-826881

RESUMEN

Soybean mosaic virus (SMV), one of the major viral diseases of Pinellia ternata (Thunb.) Breit., has had a serious impact on its yield and quality. The construction of viral infectious clones is a powerful tool for reverse genetics research on viral gene function and interaction between virus and host. To clarify the molecular mechanism of SMV infection in Pinellia ternata, it is particularly important to construct the SMV full-length cDNA infectious clone. Therefore, the infectious clone of Soybean mosaic virus Shanxi Pinellia ternata isolate (SMV-SXBX) was constructed in this study by Gibson in vitro recombination system, and the healthy Pinellia ternata leaves were inoculated by Agrobacterium infiltration, further through mechanical passage and RT-PCR, confirming that the 3' end of the SMV-SXBX infectious clone had a stable infectivity when it contained 56-nt of poly(A) tail. This method is not only convenient and efficient, but also avoids the instability of SMV infectious clones in Escherichia coli. The construction of SMV full-length infectious cDNA clones laid the foundation for further study on the molecular mechanism of SMV replication and pathogenesis.


Asunto(s)
ADN Complementario , Pinellia , Virología , Enfermedades de las Plantas , Virología , Potyvirus , Metabolismo
3.
Chinese Journal of Biotechnology ; (12): 537-541, 2009.
Artículo en Chino | WPRIM | ID: wpr-286677

RESUMEN

For expression of foreign genes in plant, plant virus vector provides many advantages, such as high expression level, short expression period and wider plant hosts. In the present study, we report the expression of thymosin alpha 1 (Talpha1) in tomato fruits by potato virus X (PVX) vector. Talpha1 gene fragment from plasmid pGEM-T containing Talpha1 gene was cloned into plant virus vector pGR107 and the resulting pGR107-Talpha1 plasmid was confirmed by digestion with Sal I and Cla I. To express the Talpha1 protein, Agrobacterium tumefaciens GV3101 transformed with pGR107-Talpha1 was directly injected into tomato fruits through the fruit stylar apex at different developmental stages. The ELISA results showed that Talpha1 protein was expressed successfully in fruits, and the highest expression level was obtained from 2.5-3 week-old tomato fruits inoculated by bacterium at 1.0 OD600 density.


Asunto(s)
Agrobacterium tumefaciens , Genética , Frutas , Genética , Metabolismo , Regulación de la Expresión Génica de las Plantas , Vectores Genéticos , Genética , Solanum lycopersicum , Genética , Metabolismo , Plantas Modificadas Genéticamente , Metabolismo , Potexvirus , Genética , Metabolismo , Recombinación Genética , Timosina , Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA