Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Journal of Biochemical Pharmaceutics ; (6): 47-49,52, 2014.
Artículo en Chino | WPRIM | ID: wpr-553363

RESUMEN

Objective To discuss the effect of Cordyceps sinensis liquid on Diabetic Nephropathy renal tubular epithelial cell transdifferentiation.Methods Diabetic Nephropathy renal tubular epithelial cells were treated with different dose of Cordyceps sinensis liquid and high glucose,and divided into five groups.Control group was added 5.5 mmol/L D-glucose,High glucose group was added 30 mmol/L D-glucose, Experimental group 1 was added 30 mmol/L D-glucose and 5μg/mL Cordyceps sinensis liquid,Experimental group 2 was added 30 mmol/L D-glucose and 10 μg/mL Cordyceps sinensis liquid,Experimental group 3 was added 30 mmol/L D-glucose and 20 μg/mL Cordyceps sinensis liquid.The expression of E-cadherin protein,FN protein,α-SMA protein and ILK protein in each group were detected by western blot. Results Compared with control group,the expression of E-cadherin protein in high glucose was decreased significantly(P<0.01),and with the addition of Cordyceps bacteria increases,E-cadherin protein expression in three Experiment group were gradually increased(P<0.01).Compared with control group,the expression ofα-SMA protein and FN protein in High glucose group were increased significantly (P <0.01 ),and both two protein in Experiment group 2 and Experiment 3 were significantly lower than High glucose group(P<0.01).Compared with control group,the expression of ILK protein in high glucose group was significantly higher(P<0.01 ),and its expression in Experiment group 3 was significantly lower than High glucose group (P<0.01 ). Conclusion Cordyceps sinensis liquid can inhibit diabetic nephropathy renal tubular epithelial cell translating into myofibroblast,then inhibit renal tubule interstitial fibrosis.

2.
Journal of Chinese Physician ; (12): 727-730, 2011.
Artículo en Chino | WPRIM | ID: wpr-416295

RESUMEN

Objective To investigate the effects of losartan on aortic elasticity and remodeling in spontaneously hypertensive rats (spontaneously hypertensive rats SHR). Methods WKY (Wistar - Kyoto ) rats with normal blood pressure and 16 weeks spontaneously hypertensive rats were randomly divided into WKY control group, SHR control group, high dose losartan group (SHR + HL), low doses losartan group (SHR + LL). Each group has six animals which were given normal diet for 24 weeks. Losartan which was dissolved in 10 ml physiological saline was filling in stomach, other groups were filling with physiological saline. Tail arterial blood pressure, kidney tissues calcium concentration, renal small artery hydroxyproline content was measured and small arteries wall thickness of Glomerularwas detected, and the ratio of thickness and inner diameter (MT/LR) in kidney pathological were observed. Results The calcium concentration of SHR group in kidney tissues was [(18.42±2.34)μmol/g], kidney small artery hydroxyproline content was [(8.26±2.02)mg/g], which were greater than WKY group [(11.83±1.98)μmol/g,(5.16±0.98)mg/g] (t=3.116,3.258,P<0.05), but the two treatment groups were less than SHR group (t=2.946,P<0.05), the difference was significant. Small arteries wall thickness of Glomerular was [(5.25±1.13)μm], the ratio of thickness and inner diameter (MT/LR) was [(9.57±1.78)%], which were greater than WKY group[(4.03±0.16)μm ,(7.12±1.35)%](t=2.836,3.425,P<0.05), but the wall thickness of two treatment groups were [(7.64±1.29)%,(7.85±1.32)%], the two treatment groups were less than SHR group (t=3.512,3.648,P<0.05). Conclusions Losartanmay inhibit intracellular calcium overload, reduce fibrosis degree and improve renal arteriole resistance and reverse the renal arteriole reconstruction of SHR rats.

3.
Basic & Clinical Medicine ; (12)2006.
Artículo en Chino | WPRIM | ID: wpr-588289

RESUMEN

It has been well-documented that ICAM-1 implicates in pathophysiology of ischemic-reperfusion injury of the kidney.Renal injury after ischemia appears to be a consequence of tissue hypoxia not only from interrupted blood supply but also from the process of reperfusion which leads to an active inflammatory process.Infiltrating leukocytes are potential source of reactive oxygen species.Proteolytic enzymes and cytokines,which during reperfusion may play a detrimental role.It has been suggested that ICAM-1 plays a key role during leukocyte adhesion and recruitment to inflamed tissue.The goal of the review is to explore the effect and significance of ICAM-1 as well as its mechanism in renal ischemia-reperfunsion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA