RESUMEN
Methods@#This experimental study investigated 15 Rattus norvegicus rats that were divided into three groups: (1) normal, (2) SCI+nonsecretome, and (3) SCI+secretome (30 μL, intrathecal Th10). Model subacute SCI post-laminectomy was performed in 60 seconds using an aneurysm Yasargil clip with a closing forceps weighing 65 g (150 kdyn). At 35 days post-injury, the specimens were collected, and the immunohistochemicals of IL-10, MMP9, and TGF-β were analyzed. Motor recovery was evaluated based on the BBB scores. @*Results@#The SCI post-laminectomy of rats treated with HNSC secretomes showed improvements in their locomotor recovery based on the BBB scores (p =0.000, mean=18.4) and decreased MMP9 (p =0.015) but had increased the levels of IL-10 (p =0.045) and TGF-β (p =0.01). @*Conclusions@#These results indicate that the factors associated with the HNSC secretomes can mitigate their pathophysiological processes of secondary damage after SCI and improve the locomotor functional outcomes in rats.
RESUMEN
Background@#Globally, spinal cord injury (SCI) results in a big burden, including 90% suffering permanent disability, and 60%–69% experiencing neuropathic pain. The main causes are oxidative stress, inflammation, and degeneration. The efficacy of the stem cell secretome is promising, but the role of human neural stem cell (HNSC)-secretome in neuropathic pain is unclear. This study evaluated how the mechanism of HNSC-secretome improves neuropathic pain and locomotor function in SCI rat models through antioxidant, anti-inflammatory, anti-matrix degradation, and neurotrophic activities. @*Methods@#A proper experimental study investigated 15 Rattus norvegicus divided into normal, control, and treatment groups (30 µL HNSC-secretome, intrathecal in the level of T10, three days post-traumatic SCI). Twentyeight days post-injury, specimens were collected, and matrix metalloproteinase (MMP)-9, F2-Isoprostanes, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β, and brain derived neurotrophic factor (BDNF) were analyzed. Locomotor recovery was evaluated via Basso, Beattie, and Bresnahan scores. Neuropathic pain was evaluated using the Rat Grimace Scale. @*Results@#The HNSC-secretome could improve locomotor recovery and neuropathic pain, decrease F2-Isoprostane (antioxidant), decrease MMP-9 and TNF-α (anti-inflammatory), as well as modulate TGF-β and BDNF (neurotrophic factor). Moreover, HNSC-secretomes maintain the extracellular matrix of SCI by reducing the matrix degradation effect of MMP-9 and increasing the collagen formation effect of TGF-β as a resistor of glial scar formation. @*Conclusions@#The present study demonstrated the mechanism of HNSC-secretome in improving neuropathic pain and locomotor function in SCI through antioxidant, anti-inflammatory, anti-matrix degradation, and neurotrophic activities.