Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Acta amaz ; Acta amaz;41(4): 471-480, 2011. ilus, tab, mapas
Artículo en Portugués | LILACS, VETINDEX | ID: lil-601757

RESUMEN

Utilizando-se dados do sensor aerotransportado SAR R99, adquiridos na banda L (1,28 GHz) em amplitude e com quatro polarizações (HH, VV, HV e VH), avaliou-se a distinção de fitofisionomias de floresta de várzea existentes nas Reservas de Desenvolvimento Sustentável Amanã e Mamirauá e áreas adjacentes, com a aplicação do algoritmo Iterated Conditional Modes (ICM) de classificação polarimétrica pontual/contextual. Os resultados mostraram que o uso das distribuições multivariadas em amplitude, conjuntamente com uma banda de textura, produziu classificações de qualidade superior àquelas obtidas com dados polarimétricos uni/bivariados. Esta abordagem permitiu a obtenção de um índice Kappa de 0,8963, discriminando as três classes vegetacionais de interesse, comprovando assim o potencial dos dados do SAR R99 e do algoritmo ICM no mapeamento de florestas de várzea da Amazônia.


This study seeks to evaluate the capability of data generated by the synthetic aperture radar SAR R99 sensor to map phytophysiognomies found in the Amanã and Mamirauá Sustainable Development Reserves (RDSA and RDSM). By means of L-band (1.28 GHz), full polarimetric (HH, VV, VH, HV), amplitude data acquired with the SAR R99 sensor, distinctions among flooded forest phytophysiognomies in the RDSA and RDSM and around were achieved. The Iterated Conditional Modes (ICM) algorithm was employed to perform the local/contextual polarimetric classification of the data. Results showed that the use of multivariate distributions in amplitude with a band of texture produced classifications of superior quality in relation to those obtained with the uni/bivariate polarimetric data. This approach allowed to obtain a Kappa index of 0,8963 and the distinction of three vegetation classes of interest, demonstrating the potential of SAR R99 and the ICM algorithm to map flooded vegetation of the Amazon.


Asunto(s)
Bosques , Tecnología de Sensores Remotos
2.
Acta amaz ; Acta amaz;35(2): 259-272, abr.-jun. 2005. ilus, mapas, tab
Artículo en Portugués | LILACS | ID: lil-413341

RESUMEN

Este artigo se propõe a apresentar exemplos de questões científicas que puderam ser respondidas no contexto do Projeto LBA (Large Sale Biosphere-Atmosphere Experiment in Amazonia) graças à contribuição de informações derivadas de sensoriamento remoto. Os métodos de sensoriamento remoto permitem integrar informações sobre os vários processos físicos e biológicos em diferentes escalas de tempo e espaço. Nesse artigo, são enfatizados aqueles avanços de conhecimento que jamais seriam alcançados sem a concorrência da informação derivada de sensoriamento.


Asunto(s)
Reconocimiento de Normas Patrones Automatizadas , Procesos Estocásticos , Tecnología de Sensores Remotos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA