Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
Int. braz. j. urol ; 50(1): 46-57, Jan.-Feb. 2024. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1558052

RESUMEN

ABSTRACT Objective: To evaluate objective treatment efficacy and safety, and subjective patient-reported outcomes in patients with complex ureteral strictures (US) undergoing minimally invasive lingual mucosal graft ureteroplasty (LMGU). Materials and Methods: We prospectively enrolled patients underwent robotic or laparoscopic LMGU between May 2020 and July 2022. Clinical success was defined as symptom-free and no radiographic evidence of re-obstruction. Patient-reported outcomes, including health-related quality of life (HRQoL), mental health status and oral health-related quality of life (OHRQoL), were longitudinally evaluated before surgery, 6 and 12 months postoperatively. Results: Overall, 41 consecutive patients were included. All procedures were performed successfully with 32 patients in robotic approach and 9 in laparoscopic. Forty (97.56%) patients achieved clinical success during the median follow-up of 29 (range 15-41) months. Although patients with complex US experienced poor baseline HRQoL, there was a remarkable improvement following LMGU. Specifically, the 6-month and 12-month postoperative scores were significantly improved compared to the baseline (p < 0.05) in most domains. Twenty-eight (68.3%) and 31 (75.6%) patients had anxiety and depression symptoms before surgery, respectively. However, no significant decrease in the incidence of these symptoms was observed postoperatively. Moreover, there was no significant deterioration of OHRQoL at 6 months and 12 months postoperatively when compared to the baseline. Conclusions: LMGU is a safe and efficient procedure for complex ureteral reconstruction that significantly improves patient-reported HRQoL without compromising OHRQoL. Assessing patients' quality of life enables us to monitor postoperative recovery and progress, which should be considered as one of the criteria for surgical success.

2.
Chinese Journal of Traumatology ; (6): 139-146, 2023.
Artículo en Inglés | WPRIM | ID: wpr-981919

RESUMEN

PURPOSE@#High explosives are used to produce blast waves to study their biological effects. The lungs are considered as the critical target organ in blast-effect studies. The degree of lung hemorrhaging is related to both the explosive power and the increased lung weight. We studied the characteristics of the biological effects from an air explosion of a thermobaric bomb in a high-altitude environment and the lethality and lung injury severity of goats in different orientations and distances.@*METHODS@#Goats were placed at 2.5, 3, 4, and 5 m from the explosion center and exposed them to an air blast at an altitude of 4700-meter. A group of them standing oriented to the right side and the other group seated facing the explosion center vertically. The lung injuries were quantified according to the percentage of surface area contused, and using the pathologic severity scale of lung blast injury (PSSLBI) to score the 4 injury categories (slight, moderate, serious and severe) as 1, 2, 3, and 4, respectively. The lung coefficient (lung weight [g]/body weight [kg]) was the indicator of pulmonary edema and was related to lung injury severity. Blast overpressure data were collected using blast test devices placed at matching locations to represent loadings to goats. All statistical analyses were performed using SPSS, version 26.0, statistical software (SPSS, Inc., Chicago, IL, USA).@*RESULTS@#In total, 127 goats were involved in this study. Right-side-standing goats had a significantly higher mortality rate than those seated vertical-facing (p < 0.05). At the 2.5 m distance, the goat mortality was nearly 100%, whereas at 5 m, all the goats survived. Lung injuries of the right-side-standing goats were 1 - 2 grades more serious than those of seated goats at the same distances, the scores of PSSLBI were significantly higher than the seated vertical-facing goats (p < 0.05). The lung coefficient of the right-side-standing goats were significantly higher than those of seated vertical-facing (p < 0.05). Mortality, PSSLBI, and the lung coefficient results indicated that the right-side-standing goats experienced severer injuries than the seated vertical-facing goats, and the injuries were lessened as the distance increased. The blast overpressure was consistent with these results.@*CONCLUSION@#The main killing factors of the thermobaric bomb in the high-altitude environment were blast overpressure, blast wind propulsions and burn. The orientation and distances of the goats significantly affected the blast injury severity. These results may provide a research basis for diagnosing, treating and protecting against injuries from thermobaric explosions.


Asunto(s)
Animales , Lesión Pulmonar/etiología , Traumatismos por Explosión , Cabras , Explosiones , Pulmón/patología
3.
Acta Pharmaceutica Sinica ; (12): 884-890, 2023.
Artículo en Chino | WPRIM | ID: wpr-978764

RESUMEN

Cardiovascular diseases are fatal threats to human health and also important fields in drug discovery. Organoid is a miniature with the structure and function similar to the organ, which is formed by the self-updating and specific differentiation of stem cells during the in vitro culture. Considering its characteristics of human origin, physical features, self-assembling and genetic stability, heart organoid has attracted much attention in the study of cardiogenesis, cardiovascular diseases modeling and related drug research. Hence, this article will review the development of heart organoids and its construction strategies, highlighting its application and prospects in drug discovery.

4.
Acta Pharmaceutica Sinica ; (12): 928-937, 2023.
Artículo en Chino | WPRIM | ID: wpr-978750

RESUMEN

Dayuanyin (DYY) has been shown to reduce lung inflammation in both coronavirus disease 2019 (COVID-19) and lung injury. This experiment was designed to investigate the efficacy and mechanism of action of DYY against hypoxic pulmonary hypertension (HPH) and to evaluate the effect of DYY on the protection of lung function. Animal welfare and experimental procedures are approved and in accordance with the provision of the Animal Ethics Committee of the Institute of Materia Medica, Chinese Academy of Medical Science. Male C57/BL6J mice were randomly divided into 4 groups: control group, model group, DYY group (800 mg·kg-1), and positive control sildenafil group (100 mg·kg-1). The animals were given control solvents or drugs by gavage three days in advance. On day 4, the animals in the model group, DYY group and sildenafil group were kept in a hypoxic chamber containing 10% ± 0.5% oxygen, and the animals in the control group were kept in a normal environment, and the control solvent or drugs continued to be given continuously for 14 days. The right ventricular systolic pressure, right ventricular hypertrophy index, organ indices and other metrics were measured in the experimental endpoints. Meantime, the expression levels of the inflammatory factors in mice lung tissues were measured. The potential therapeutic targets of DYY on pulmonary hypertension were predicted using network pharmacology, the expression of nuclear factor kappa B (NF-κB) signaling pathway-related proteins were measured by Western blot assay. It was found that DYY significantly reduced the right ventricular systolic pressure, attenuated lung injury and decreased the expression of inflammatory factors in mice. It can also inhibit hypoxia-induced activation of NF-κB signaling pathway. DYY has a protective effect on lung function, as demonstrated by DYY has good efficacy in HPH, and preventive administration can slow down the disease progression, and its mechanism may be related to inhibit the activation of NF-κB and signal transducer and activator of transcription 3 (STAT3) by DYY.

5.
Acta Pharmaceutica Sinica ; (12): 1867-1879, 2023.
Artículo en Chino | WPRIM | ID: wpr-978660

RESUMEN

By integrating plant metabonomics and target quantitative analysis methods, this study systematically analyzed the differences of chemical constituents in Scutellaria baicalensis leaves from different producing areas in Shanxi, so as to provide theoretical basis for rational and effective utilization of Scutellaria baicalensis leaves. Based on the idea of plant metabonomics, the liquid quality of 53 batches of Scutellaria baicalensis leaves from 8 different producing areas in Shanxi was analyzed by UPLC-QTOF-MS, and the collected data were imported into SIMCA 14.1 software for multivariate statistical analysis to screen the different chemical constituents among different habitats in Shanxi. Meanwhile, a method for simultaneous determination of 7 flavonoids and 3 organic acids in Scutellaria baicalensis leaves was optimized and established to quantitatively analyze the differences of chemical components in Scutellaria baicalensis leaves from different producing areas in Shanxi. The results of plant metabonomics showed that there were differences in the chemical composition of Scutellaria baicalensis leaves in northern Shanxi (Datong, Xinzhou), Jinzhong (Yangquan, Luliang) and southern Shanxi (Changzhi, Yuncheng, Jincheng, Linfen): there were 14 significant differences in chemical composition between northern Shanxi and Jinzhong; there were 18 significant differences in chemical constituents between southern Shanxi and central Shanxi. There were 15 significant differences in chemical constituents between northern Shanxi and southern Shanxi. Among them, scutellarin and isocarthamidin-7-O-glucuronide were the common differences among the three regions, and the content of scutellarin was the highest in southern Shanxi and the lowest in northern Shanxi. The content of isocarthamidin-7-O-glucuronide was the highest in Jinzhong area and the lowest in northern Shanxi area. Quantitative analysis further confirmed that the average contents of apigenin, naringenin and citric acid were the highest in northern Shanxi, scutellarin, caffeic acid, apigenin-7-O-glucuronide, malic acid and wogonoside were the highest in southern Shanxi, and wogonoside and baicalin were the highest in central Shanxi. This study is of great significance to the quality control of Scutellaria baicalensis leaf resources, and provides theoretical basis for rational and effective utilization of Scutellaria baicalensis leaf resources.

6.
Acta Pharmaceutica Sinica ; (12): 672-678, 2023.
Artículo en Chino | WPRIM | ID: wpr-965619

RESUMEN

The aim of this study was to investigate the effect of baicalein on a Drosophila model of hereditary Parkinson's disease caused by gene mutations and to preliminarily elucidate the mechanism of baicalein in delaying hereditary Parkinson's disease. In this paper, PTEN-induced putative kinase 1 (PINK1)-RNAi Parkinson's Drosophila were used as the model group and wild-type Drosophila w1118 were used as the control group. Different doses of baicalein and Madopa were administered to the model group to observe their effects on the life span, motor ability, the abnormal rate of wings, dopamine content and dopaminergic neurons of PINK1-RNAi Parkinson's Drosophila and their effects on mitochondrial dysfunction including adenosine triphosphate (ATP), mitochondrial DNA (mtDNA) and reactive oxygen species (ROS) content. The results showed that the effective administration doses of baicalein were 0.8 mg·mL-1 for low concentration, 1.6 mg·mL-1 for medium concentration and 3.2 mg·mL-1 for high concentration, and the optimal administration dose of the positive drug Madopa was 0.1 μg·mL-1. Baicalein and Madopa could significantly improve the life span, exercise ability and reduce the abnormal rate of wings of PINK1-RNAi male Drosophila (P < 0.05), and low dose baicalein showed the best effect; baicalein could improve the loss of dopaminergic neurons, and the effects of low dose and high dose were the best, but Madopa showed no significant effect; baicalein and Madopa had no significant effect on dopamine content (P > 0.05). Baicalein and Madopa could increase the ATP content of PINK1-RNAi male Drosophila (P < 0.05), and low dose baicalein showed the best effect; middle dose baicalein could significantly increase the mtDNA content of PINK1-RNAi male Drosophila (P < 0.05), but Madopa had no significant effect; baicalein and Madopa had no significant effect on ROS content (P > 0.05).

7.
Acta Pharmaceutica Sinica ; (12): 9-20, 2023.
Artículo en Chino | WPRIM | ID: wpr-964303

RESUMEN

Pancreatic cancer is a highly malignant tumor with a poor prognosis. It is very hard to treat pancreatic cancers for their high heterogeneity, complex tumor microenvironment, and drug resistance. Currently, gemcitabine plus nab-paclitaxel, capecitabine and FOLFIRINOX are standard chemotherapy for resectable or advanced metastatic pancreatic cancer. Considering the limited efficacy and toxic side effects of chemotherapy, targeted and immune drugs have gradually attracted attention and made some progress. In this article, we systematically reviewed the chemotherapeutic drugs, targets and related targeted drugs, and immunotherapy drugs for pancreatic cancer.

8.
Acta Pharmaceutica Sinica ; (12): 3508-3518, 2023.
Artículo en Chino | WPRIM | ID: wpr-1004648

RESUMEN

Tumor brings great threat to human public health. In recent years, incidence rate and mortality of tumor were rapidly increased in the world. Anti-tumor therapies have undergone the development of cytotoxic therapy, targeted therapy, and immunotherapy. Among them, tumor immunotherapy is rapidly developed and becomes an important anti-tumor therapy in recent years, although it also brings some related side effects. Tumor microenvironment (TME) is composed of immune cells, vascular vessels, fibroblasts, the extracellular matrix, etc. TME significantly affects the efficacy of immunotherapy. Macrophages in the TME are named as tumor associated macrophages (TAMs). Recently, increasing studies have shown that TAMs play an important role in the regulation of tumor immunity, especially in tumor immune surveillance and immune escape. Currently, more and more anti-tumor immunotherapy strategies targeting TAMs are at the development stage. Based on the important role of TAMs in the TME and their potential as therapeutic targets in tumor immunotherapy, we first reviewed the subtypes and functions of TAMs, as well as the roles of TAMs in tumors. Furthermore, we summarized the research progress on anti-tumor strategies targeting TAMs and the current status of drug targeting TAMs. The current review will provide new ideas and novel insights for tumor immunotherapy.

9.
Chinese Pharmacological Bulletin ; (12): 201-206, 2023.
Artículo en Chino | WPRIM | ID: wpr-1013843

RESUMEN

Hyperuricemia is a chronic metabolic disease caused by purine metabolism disorder or uric acid excretion disorder. The experimental animal model of hyperuricemia is the basis for studying the pathological mechanism and drug treatment of hyperuricemia. This paper reviews the experimental animal models of hyperuricemia commonly used in drug research, and introduces the modeling principle, preparation methods, species selection and related detection techniques of the models, so as to provide reference for the application of such models in research.

10.
China Journal of Chinese Materia Medica ; (24): 4413-4420, 2023.
Artículo en Chino | WPRIM | ID: wpr-1008695

RESUMEN

The present study investigated the chemical constituents from the aerial parts of Glycyrrhiza uralensis. The ethanol extract of the aerial parts of G. uralensis was separated and purified by different column chromatographies such as macroporous resin, silica gel, and Sephadex LH-20, and through preparative HPLC and recrystallization. Thirteen compounds were isolated and identified as(2S)-6-[(Z)-3-hydroxymethyl-2-butenyl]-5,7,3'-trihydroxy-4'-methoxy-dihydroflavanone(1),(2S)-8-[(E)-3-hydroxymethyl-2-butenyl]-5,7,3',5'-tetrahydroxy-dihydroflavanone(2), α,α'-dihydro-5,4'-dihydroxy-3-acetoxy-2-isopentenylstilbene(3), 6-prenylquercetin(4), 6-prenylquercetin-3-methyl ether(5), formononetin(6), 3,3'-dimethylquercetin(7), chrysoeriol(8), diosmetin(9),(10E,12Z,14E)-9,16-dioxooctadec-10,12,14-trienoic acid(10), 5,7,3',4'-tetrahydroxy-6-prenyl-dihydroflavanone(11), naringenin(12), dibutylphthalate(13). Compounds 1-3 are new compounds, and compounds 10 and 13 are isolated from aerial parts of this plant for the first time.


Asunto(s)
Glycyrrhiza uralensis/química , Componentes Aéreos de las Plantas/química
11.
Bol. latinoam. Caribe plantas med. aromát ; 21(5): 620-630, sept. 2022. tab
Artículo en Inglés | LILACS | ID: biblio-1553783

RESUMEN

This study investigated anti-viral, antioxidant activity and anti-pyretic of crude extract from Artemisia afra, Artemisia absinthium and Pittiosporum viridflorum leaves. The crude extracts were prepared by maceration using aqueous, methanol and dichloromethane respectively. Antiviral studies were evaluated with influenza virus using Fluorescence based - Neuraminidase inhibitors. Antioxidant activities determined with DPPH, Nitric oxide, hydroxyl and super oxide anion radicals' Anti-pyretic activities were evaluated using rats with yeast induced pyrexia. Total phenol, flavonoids, and pro-anthocyanin contents of the plants samples were evaluated using standard protocols. The crude extracts exhibited neuraminidase inhibitory activity against the influenza virus at different thresholds. Artemisia absinthiumaqueous extract showed the best activity against A/Sydney/5/97. Whereas Artemisia afra methanol crude extract displayed highest antioxidant potential against the tested antioxidant parameters. All the crude extracts significantly reversed yeast induced pyrexia in rats, similar to paracetamol. Thus, they could serve as natural remedy for respiratory diseases such as Influenza.


Este estudio investigó la actividad antiviral, antioxidante y antipirética del extracto crudo de hojas de Artemisia afra, Artemisia absinthium y Pittiosporum viridflorum. Los extractos crudos se prepararon mediante maceración utilizando metanol acuoso y diclorometano respectivamente. Los estudios antivirales se evaluaron con el virus de la influenza utilizando inhibidores de neuraminidasa basados en fluorescencia. Actividades antioxidantes determinadas con DPPH, radicales aniónicos de óxido nítrico, hidroxilo y superóxido. Las actividades antipiréticas se evaluaron utilizando ratas con pirexia inducida por levaduras. El contenido total de fenol, flavonoides y proantocianina de las muestras de plantas se evaluó utilizando protocolos estándar. Los extractos crudos mostraron actividad inhibidora de neuraminidasa contra el virus de la influenza en diferentes umbrales. El extracto acuoso de Artemisia absinthium mostró la mejor actividad contra A/Sydney/5/97. Mientras que el extracto crudo de Artemisia aframetanol mostró el mayor potencial antioxidante contra los parámetros antioxidantes probados. Todos los extractos crudos revirtieron significativamente la pirexia inducida por levaduras en ratas, similar al paracetamol. Por tanto, podrían servir como remedio natural para enfermedades respiratorias como la Influenza.


Asunto(s)
Plantas Medicinales , Extractos Vegetales/biosíntesis , Mezclas Complejas/biosíntesis , Antivirales , Sudáfrica , Antipiréticos , Antioxidantes
12.
Acta Pharmaceutica Sinica ; (12): 1420-1428, 2022.
Artículo en Chino | WPRIM | ID: wpr-924757

RESUMEN

The purpose of this study was to systematically analyze the antidepressant mechanism of Chaigui granules from the perspective of biological metabolic network by using integrated metabolomics and biological network analysis tools. The model of chronic unpredictable mild stress (CUMS) depression rat was established, and LC-MS-based plasma metabolomics was used to identify the key metabolites and analyze metabolic pathways underlying the antidepressant effects of Chaigui Granules. The key metabolites regulated by Chaigui granules was integrated with biological network analysis tools to further focus on the key metabolic pathways and explore the potential targets of the antidepressant effect of Chaigui granules. The results showed that there were significant differences in the plasma levels of 20 metabolites in the model group compared with the control group (P < 0.05), Chaigui granules significantly regulated 12 metabolites including docosatrienoic acid, 3-hydroxybutyric acid, 4-hydroxybenzaldehyde, chenodeoxycholic acid, cholic acid, L-glutamine, glycocholic acid, linoleyl carnitine, L-tyrosine, N-acetylvaline, palmitoylcarnitine, arachidonic acid. Further network analysis of the key metabolites regulated by Chaigui granules indicated that plasma arachidonic acid metabolism might be the core pathway for the antidepressant effect of Chaigui granules, with 10 proteins were potential targets for the antidepressant effect of Chaigui granules, including CYP2B6, CYP2E1, CYP2C9, CYP2C8, PLA2G6, PTGS2, ALOX15B, PTGS1, ALOX12 and ALOX5. The animal experimental operations involved in this paper was followed the regulations of the Animal Ethics Committee of Shanxi University and passed the animal experimental ethical review (Approval No. SXULL2020028).

13.
Acta Pharmaceutica Sinica ; (12): 1352-1360, 2022.
Artículo en Chino | WPRIM | ID: wpr-924746

RESUMEN

This study investigated the effect of puerarin on human umbilical vein endothelial cells (HUVEC) injured with hydrogen peroxide (H2O2). HUVEC were divided into three groups: a control group, a model group (H2O2 400 μmol·L-1) and a puerarin-treated group (3, 10, 30 and 100 μmol·L-1). HUVEC were cultured with varied concentration of puerarin for 2 h and treated with H2O2 for another 24 h. Cell proliferation was detected by a CCK-8 assay. The mitochondrial membrane potential was measured by a JC-1 fluorescent probe. A transwell chamber assay was adopted to observe cell migration ability. Mitochondrial respiratory function was measured in a two-chamber titration injection respirometer (Oxygraph-2k). The expression of interleukin-1β (IL-1β), interleukin-18 (IL-18) and tumor necrosis factor-α (TNF-α) was detected by quantitative real-time PCR. The expression of pyroptosis-mediated proteins, including cleaved-cysteinyl aspartate-specific proteinase-1 (caspase-1), N-gasdermin D (N-GSDMD), NOD-like receptor protein 3 (NLRP3) and purinergic ligand-gated ion channel 7 receptor (P2X7R) was detected by Western blot. The results show that 400 μmol·L-1 H2O2 treatment for 24 h causes obvious damage to HUVEC. Compared with the model group, puerarin protected against cellular injury in a dose-dependent manner, with the greatest effect at a dose of 30 and 100 μmol·L-1. Puerarin significantly decreased the mitochondrial membrane potential and improved mitochondrial function. Puerarin inhibited cell migration induced by H2O2, suppressed the expression of IL-1β, IL-18 and TNF-α, and down-regulated the pyroptosis-mediated protein. These changes are statistically significant (P < 0.05). These findings demonstrate that puerarin has a protective effect against H2O2-induced oxidative damage of HUVEC by inhibiting the migration of HUVEC cells. The mechanism may be related to improved mitochondrial respiratory function and inhibition of pyroptosis.

14.
Acta Pharmaceutica Sinica ; (12): 568-575, 2022.
Artículo en Chino | WPRIM | ID: wpr-922892

RESUMEN

Type 2 diabetes is a hypermetabolic disease characterized with disorders of glucose/lipid metabolism, absolute or relative lack of insulin, and can induce skeletal muscle atrophy. Hyperglycemia, hyperlipidemia, insulin resistance, and abnormal release of inflammatory factors can lead to abnormal signal transduction in skeletal muscle, thus make protein synthesis and degradation imbalance and eventually causing muscle atrophy. Under normal conditions, insulin-like growth factor 1 (IGF-1)/insulin can activate phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT). AKT not only increases protein synthesis through mammalian target protein of rapamycin (mTOR), but also phosphorylates forkhead box O (FoxO) transcription factor and then inhibits the transcription of several ubiquitin ligases (such as MAFbx/atrogin-1 and MuRF1), or autophagy related genes. The weakened IGF-1/PI3K/AKT pathway in type 2 diabetes is an important factor leading to skeletal muscle atrophy. Studies have shown that the commonly used anti-type 2 diabetic drugs have different effects in regulating the synthesis and degradation of skeletal muscle protein. Studies reported that drugs with effect of anti-diabetic muscle atrophy include thiazolidinediones, glucagon-like peptide analogs, glucose-sodium cotransporter 2 inhibitors, etc.; drugs that are still in controversial or even promote skeletal muscle atrophy include metformin, and some sulfonylurea or non-sulfonylurea insulin secretagogues. This article overviewed and analyzed the currently commonly used drugs for type 2 diabetes and summarized the related mechanisms, with the aim to provide references for the rational applications of drugs for type 2 diabetes.

15.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 247-255, 2022.
Artículo en Chino | WPRIM | ID: wpr-940716

RESUMEN

Traditional Chinese medicine (TCM), which owns abundant chemical components and complex action pathways, has been widely recognized in the prevention and treatment of diseases. Some analysis methods have been emerged in order to ensure the quality of TCM and to develop new TCM drugs. Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) is a soft ionization mass spectrometric technique with the advantages of high throughput, high sensitivity, low cost and so on. It provides technical support for the molecular level study on TCM. At present, this technique has been used in the field of composition analysis and metabonomics research of TCM, and plays an important role in the identification of Chinese herbal medicines, real-time molecular screening and the construction of metabolic network pathway of active ingredients. Among them, the selection of appropriate matrix and sample preparation technology is the key to ensure the detection effect of MALDI-MS. With the development and optimization of new matrix, the continuous improvement of sample preparation technology and the combination of MALDI-MS with various analytical methods will greatly improve the detection effect. Based on this, this paper discusses the application of MALDI-MS in TCM, including high-throughput detection of active ingredients in TCM, monitoring of the original medicines and their metabolites in vivo, and in situ visualization and characterization of tissue distribution information of active ingredients in TCM. It also discusses the application prospect and existing problems of MALDI-MS in TCM, so as to provide technical support for the identification of active ingredients in TCM, drug utilization and metabolism.

16.
Acta Pharmaceutica Sinica ; (12): 2245-2252, 2022.
Artículo en Chino | WPRIM | ID: wpr-937046

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disease with a high clinical heterogeneity. According to its motor symptoms, PD patients are divided into predominant tremor-dominant, postural instability and gait difficulty-dominant/akinetic-rigid and mixed subtypes. Different subtypes show different prognostic characteristics and different sensitivities to drugs. Therefore, the early classification of PD is of great significance for the treatment and prognosis of the disease. This paper reviews the clinical classification methods of different subtypes of PD, summarizes the latest biochemical markers and imaging features, and analyzed the differences in incidence, prognosis and pathological mechanism. The current clinical treatment drugs and methods have been preliminarily targeted for treatment based on PD classification, and there are many animal models of PD subtypes have been studied, providing new methods and strategies for mechanism research and preclinical pharmacodynamics evaluation of PD subtypes.

17.
Chinese Journal of Hepatology ; (12): 362-366, 2022.
Artículo en Chino | WPRIM | ID: wpr-935955

RESUMEN

The liver is abundant in blood supply and receives 25% of the cardiac output via the hepatic artery and portal vein. Circulatory disorders may cause hepatic injury, resulting in congestive hepatopathy(CH) and ischemic hepatitis(IH). Hepatic congestion arising from increased hepatic venous pressure and decreased cardiac output is the common pathophysiological basis of both CH and IH. In addition, extensive arteriovenous shunts affect portal pressure and cardiac function, leading to alterations of hepatic blood supply. The current review summarizes the pathophysiology, clinical manifestations and therapeutic interventions of the above diseases, in order to provide reference for clinical practice.


Asunto(s)
Humanos , Enfermedades Cardiovasculares , Arteria Hepática , Hígado , Hepatopatías , Presión Portal , Vena Porta
18.
Chinese Journal of Stomatology ; (12): 462-473, 2022.
Artículo en Chino | WPRIM | ID: wpr-935888

RESUMEN

With the aging process of population in the society, the prevalence of cardiovascular diseases (CVD) in China is increasing continuously and the number of dental patients with CVD is increasing gradually too. Due to the lack of guidelines for dental patients with CVD in our country, how to implement standardized preoperative evaluation and perioperative risk prevention remains a problem to be solved for dentists at present. The present expert consensus was reached by combining the clinical experiences of the expert group of the Fifth General Dentistry Special Committee, Chinese Stomatological Association and respiratory and cardiology experts in diagnosis and treatment for CVD patients, and by systematically summarizing the relevant international guidelines and literature regarding the relationship between CVD and oral diseases and the diagnosis and treatment of dental patients with heart failure, hypertension and antithrombotic therapy. The consensus aims to provide, for the dental clinicians, the criteria on diagnosis and treatment of CVD in dental patients in China so as to reduce the risk and complications, and finally to improve the treatment levels of dental patients with CVD in China.


Asunto(s)
Humanos , Enfermedades Cardiovasculares/prevención & control , China/epidemiología , Consenso , Atención Odontológica , Medicina Oral
19.
Acta Pharmaceutica Sinica ; (12): 1621-1629, 2022.
Artículo en Chino | WPRIM | ID: wpr-929457

RESUMEN

Cystine/glutamate antiporter [system Xc(-)] is a sodium independent amino acid transporter, which is a heterodimer composed of light chain subunit xCT and heavy chain subunit 4F2hc (CD98) through covalent disulfide bond. System Xc(-) typically mediates cystine uptake and glutamate output, helps to maintain the balance of glutamate, cystine and cysteine inside and outside the cell, regulates the level of glutamate inside and outside the membrane and the synthesis of intracellular glutathione, thus affecting oxidative stress and glutamate neurotoxicity. This review expounds the structure and function of system Xc(-), analyzes the role of the transporter in physiology and pathology, discusses the role and mechanism in different diseases, and discusses the specific research progress of system Xc(-) as a drug target. This review summarizes the research status of system Xc(-) and provides theoretical guidance for further research on system Xc(-) and drug discovery.

20.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 332-351, 2022.
Artículo en Inglés | WPRIM | ID: wpr-929265

RESUMEN

Cancer is a complex disease associated with multiple gene mutations and malignant phenotypes, and multi-target drugs provide a promising therapy idea for the treatment of cancer. Natural products with abundant chemical structure types and rich pharmacological characteristics could be ideal sources for screening multi-target antineoplastic drugs. In this paper, 50 tumor-related targets were collected by searching the Therapeutic Target Database and Thomson Reuters Integrity database, and a multi-target anti-cancer prediction system based on mt-QSAR models was constructed by using naïve Bayesian and recursive partitioning algorithm for the first time. Through the multi-target anti-cancer prediction system, some dominant fragments that act on multiple tumor-related targets were analyzed, which could be helpful in designing multi-target anti-cancer drugs. Anti-cancer traditional Chinese medicine (TCM) and its natural products were collected to form a TCM formula-based natural products library, and the potential targets of the natural products in the library were predicted by multi-target anti-cancer prediction system. As a result, alkaloids, flavonoids and terpenoids were predicted to act on multiple tumor-related targets. The predicted targets of some representative compounds were verified according to literature review and most of the selected natural compounds were found to exert certain anti-cancer activity in vitro biological experiments. In conclusion, the multi-target anti-cancer prediction system is very effective and reliable, and it could be further used for elucidating the functional mechanism of anti-cancer TCM formula and screening for multi-target anti-cancer drugs. The anti-cancer natural compounds found in this paper will lay important information for further study.


Asunto(s)
Humanos , Antineoplásicos/farmacología , Teorema de Bayes , Medicamentos Herbarios Chinos/química , Medicina Tradicional China , Neoplasias/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA