RESUMEN
Objective@#: The use of oblique lateral interbody fusion at the L5–S1 level (OLIF51) is increasing, but no study has directly compared OLIF51 and transforaminal lumbar interbody fusion (TLIF) at the L5–S1 level. We evaluated the usefulness of OLIF51 by comparing clinical and radiologic outcomes with those of TLIF at the same L5–S1 level. @*Methods@#: We retrospectively reviewed and compared 74 patients who underwent OLIF51 (OLIF51 group) and 74 who underwent TLIF at the L5–S1 level (TLIF51 group). Clinical outcomes were assessed with the visual analogue scale for back pain and leg pain and the Oswestry Disability Index. Mean disc height (MDH), foraminal height (FH), disc angle (DA), fusion rate, and subsidence rate were measured for radiologic outcomes. @*Results@#: The OLIF51 group used significantly higher, wider, and larger-angled cages than the TLIF51 group (p<0.001). The postoperative MDH and FH were significantly greater in the OLIF51 group than in the TLIF51 group (p<0.001). The postoperative DA was significantly larger in the OLIF51 group than in the TLIF51 group by more than 10º (p<0.001). The fusion rate was 81.1% and 87.8% at postoperative 6 months in the OLIF51 and TLIF51 groups, respectively, and the TLIF51 group showed a higher fusion rate (p<0.05). The subsidence rate was 16.2% and 25.3% in the OLIF51 and TLIF51 groups, respectively, and the OLIF51 group showed a lower subsidence rate (p<0.05). @*Conclusion@#: OLIF51 was more effective for the indirect decompression of foraminal stenosis, providing strong mechanical support with a larger cage, and making a greater lordotic angle with a high-angle cage than with TLIF.
RESUMEN
We report a rare case of a patient with Moyamoya syndrome who presented with intracerebral hemorrhage resulting from rupture of a middle meningeal artery pseudoaneurysm. This 38-year-old woman was unconscious and hemiplegic when she was admitted to our hospital. The patient had mental retardation as a result of tuberculous meningitis infection at the age of one year. On radiologic examination, she had intracerebral hemorrhage in the right temporo-parietal lobe and an aneurysm in the middle meningeal artery with right internal carotid artery occlusion. The patient underwent surgical treatment for the hemorrhage and aneurysm. The radiologic data, intraoperative findings, and pathology were consistent with a diagnosis of pseudoaneurysm. In the current report, we describe a rare case of a patient with a history of tuberculous meningitis who developed Moyamoya syndrome and pseudoaneurysm, which resulted in a ruptured middle meningeal artery pseudoaneurysm and brain hemorrhage.