Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Añadir filtros








Intervalo de año
1.
Acta Physiologica Sinica ; (6): 449-454, 2012.
Artículo en Inglés | WPRIM | ID: wpr-333180

RESUMEN

The present study was designed to investigate the role of protein kinase A (PKA) and phospholipase A(2) (PLA(2)) in the stimulating effect of adenosine on the basolateral 50 pS K(+) channels in the thick ascending limb (TAL) of the rat kidney. Under the anatomic microscope, the TAL was dissected. The current of 50 pS K(+) channels were recorded by patch clamp technology. The protein expression of phosphorylated PKA and phosphorylated PLA(2) were examined by Western blot. The results showed that cyclohexyladenosine (CHA), an analog of adenosine, increased the 50 pS K(+) channel activity (P < 0.05). In the presence of H8, an antagonist of PKA, CHA did not affect the 50 pS K(+) channel activity. In the presence of AACOCF3 (an antagonist of PLA(2)), CHA did not further increase the 50 pS K(+) channel activity. CHA increased phosphorylation level of PKA, whereas inhibited phosphorylation of PLA(2) in the TAL of the rat kidney (P < 0.01). Furthermore, after blocking the PLA(2) with AACOCF3, CHA still increased the expression of phosphorylated PKA. On the contrary, CHA did not obviously change the expression of phosphorylated PLA(2) after H8 pretreatment. The results suggest that the stimulation of basolateral 50 pS K(+) channels by CHA is mediated by the activation of PKA followed by the inhibition of PLA(2) in the TAL of the rat kidney.


Asunto(s)
Animales , Ratas , Adenosina , Farmacología , Ácidos Araquidónicos , Farmacología , Proteínas Quinasas Dependientes de AMP Cíclico , Metabolismo , Riñón , Metabolismo , Técnicas de Placa-Clamp , Fosfolipasas A2 , Metabolismo , Canales de Potasio , Metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA