Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Braz. arch. biol. technol ; 65: e22200784, 2022. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1364455

RESUMEN

Abstract Nanoscale biomaterials are commonly used in a wide range of biomedical applications such as bone graft substitutes, gene delivery systems, and biologically active agents. On the other hand, the cytotoxic potential of these particles hasn't yet been studied comprehensively to understand whether or not they exert any negative impact on the cellular structures. Here, we undertook the synthesis of beta-tricalcium phosphate (ß-TCP) and biphasic tricalcium phosphate (BCP) nanoparticles (NPs) and determine their concentration-dependent toxic effects in human fetal osteoblastic (hFOB 1.19) cell line. Firstly, BCP and β-TCP were synthesized using a water-based precipitation technique and characterized by X-Ray Diffraction (XRD), Raman Spectroscopy, and Transmission Electron Microscopy (TEM). The cytological effects of β-TCP and BCP at different concentrations (0-640 ppm) were evaluated by using 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. The total oxidative status (TOS) parameter was used for investigating oxidative stress potentials of the NPs. In addition, the study assessed the DNA damage product 8-hydroxy-2′-deoxyguanosine (8-Oxo-dG) level in hFOB 1.19 cell cultures. The results indicated that the β-TCP (above 320 ppm) and BCP (above 80 ppm) NPs exhibited cytotoxicity effects on high concentrations. It was also observed that the oxidative stress increased relatively as the concentrations of NPs increased, aligning with the cytotoxicity results. However, the NPs concentrations of 160 ppm and above increased the level of 8-OH-dG. Consequently, there is a need for more systematic in vivo and in vitro approaches to the toxic effects of both nanoparticles.

2.
IJPR-Iranian Journal of Pharmaceutical Research. 2012; 11 (3): 889-896
en Inglés | IMEMR | ID: emr-160877

RESUMEN

Several lichen species have been used for medicinal purposes throughout the ages, and they were reported to be effective in the treatment of different disorders including tuberculosis, hemorrhoids, ulcer, dysentery and cancer. It is revealed that they may be easily accessible sources of natural drugs that could be used as a possible food supplement or in pharmaceutical industry after their safety evaluations. However, so far, the nature and/or biological roles of plenty of lichenes have not been elucidated exactly. The aim of this study was to investigate the genetic and oxidative effects of water extracts of three different lichen species; Hypogymnia physodes, Ramalina polymorpha and Usnea florida in cultured human blood cells [n = 5] for the first time. All lichen species were collected from the Erzurum and Artvin provinces [in Turkey] during August 2010. The lichen extracts were added into culture tubes at various concentrations [0 to 2000 mg/L]. Chromosome aberrations [CA] and micronucleus [MN] tests were used for genotoxic influences estimation. In addition, biochemical parameters [total antioxidant capacity [TAG] and total oxidative stress [TOS]] were examined to determine oxidative effects. In our in-vitro test systems, it was observed that all tested lichen extracts had no mutagenic effects on human lymphocytes. Furthermore, these extracts exhibited antioxidant properties due to the type of lichen species added to the cultures. In conclusion, these lichens can be a new resource of therapeutics as recognized in this study with their non-mutagenic and antioxidant features

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA