Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
AJMB-Avicenna Journal of Medical Biotechnology. 2014; 6 (2): 113-118
en Inglés | IMEMR | ID: emr-142233

RESUMEN

Numerous in vitro reports suggest that Low Level Laser Therapy [LLLT] affects cellular processes by biostimulation, however most of them emphasize on using visible light lasers which have low penetration. The aim of this study was to determine the effect of infrared laser light [which is more useful in clinic because of its higher penetration] on secretion of Fibroblast Growth Factor [FGF], Platelet Derived Growth Factor [PDGF] and Vascular Endothelial Growth Factor [VEGF], as important growth factors in wound healing. Fibroblasts were extracted from the skin of 7 diabetic and 7 nondiabetic mice and cultured. Cell cultures of experimental group were irradiated with single dose of LLLT [energy density of 1 J/ cm[2]] using an 810 nm continuous wave laser and the control group was not irradiated. Secretion of growth factors by skin fibroblasts were quantified through real time polymerase chain reaction. Diabetic irradiated group showed significant increase in FGF [p=0.017] expression, although PDGF increased and VEGF decreased in both diabetic and nondiabetic irradiated groups, but these variations were not statistically significant. These results suggest that LLLT may play an important role in wound healing by stimulating the fibroblasts

2.
IBJ-Iranian Biomedical Journal. 2012; 16 (2): 68-76
en Inglés | IMEMR | ID: emr-155415

RESUMEN

Wound healing of burned skin remains a major goal in public health. Previous reports showed that the bone marrow stem cells were potent in keratinization and vascularization of full thickness skin wounds. In this study, mesenchymal stem cells were derived from rat adipose tissues and characterized by flowcytometry. Staining methods were used to evaluate their differentiation ability. A collagen-chitosan scaffold was prepared by freeze-drying method and crosslinked by carbodiimide-based crosslinker. The results of immunecytochemistry and PCR experiments confirmed the adipose-derived stem cells [ASC] in differentiation to the keratinocytes under the treatment of keratinocyte growth factor. The isolated ASC were seeded on the scaffolds and implanted at the prepared wounds. The scaffolds without cells were considered as a control and implanted on the other side of the rat. Histopathological analyses confirmed the formation of new tissue on the scaffold-cell side after 14 days with the formation of dermis and epidermis. These results indicated the capacity of ASC in differentiation to keratinocytes and also wound healing in vivo


Asunto(s)
Animales , Animales de Laboratorio , Cicatrización de Heridas , Piel , Regeneración , Colágeno , Andamios del Tejido , Ratas , Ingeniería de Tejidos , Queratinocitos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA