RESUMEN
Objective:To observe the effect of high expression of polypyrimidine tract-binding protein-associated splicing factor (PSF) on low concentration of 4-hydroxynonenal (4-HNE) induced human retinal microvascular endothelial cells (HRMECs), and explore the possible mechanism.Methods:The HRMECs cultured in vitro were divided into 4-HNE treated group, PSF overexpression group combined with 4-HNE group (PSF+4-HNE group), PSF overexpression+ML385 treatment combined with 4-HNE group (PSF+ML385+4-HNE group), and 4-HNE induced PSF overexpression group with LY294002 pretreatment (LY294002+4-HNE+PSF group). Cell culture medium containing 10 μmmol/L 4-HNE was added into 4-HNE treatment group, PSF+4-HNE group, PSF+ML385+4-HNE group for 12 hours to stimulate oxidative stress. 1.0 μg of pcDNA-PSF eukaryotic expression plasmid were transfected into PSF+4-HNE group and PSF+ML385+4-HNE group to achieve the overexpression of PSF. Also cells were pretreated with ML385 (5 μmol/L) for 48 hours in the PSF+ML385+4-HNE group, meanwhile within the LY294002+4-HNE+PSF group, after pretreatment with LY294002, cells were treated with plasmid transfection and 4-HNE induction. Transwell detects the migration ability of PSF to HRMECs. The effect of PSF on the lumen formation of HRMECs was detected by using Matrigel in vitro three-dimensional molding method. Flow cytometer was used to detect the effect of PSF overexpression on reactive oxygen (ROS) level in HRMECs. Protein immunoblotting was used to detect the relative expression of PSF, nuclear factor E2 related factor 2 (Nrf2), heme oxygenase-1 (HO-1) protein, and phosphoserine threonine protein kinase (pAkt) protein. The comparison between the two groups was performed using a t-test. Results:The number of live cells, migrating cells, and intact lumen formation in the 4-HNE treatment group and the PSF+4-HNE group were 1.70±0.06, 0.80±0.13, 24.00±0.58, 10.00±0.67, and 725.00±5.77, 318.7±12.13, respectively. There were significant differences in the number of live cells, migrating cells, and intact lumen formation between the two groups ( t=12.311, 15.643, 17.346; P<0.001). The results of flow cytometry showed that the ROS levels in the 4-HNE treatment group, PSF+4-HNE group, and PSF+ML385+4-HNE group were 816.70±16.67, 416.70±15.44, and 783.30±17.41, respectively. There were statistically significant differences between the two groups ( t=16.311, 14.833, 18.442; P<0.001). Western blot analysis showed that the relative expression levels of pAkt, Nrf2, and HO-1 proteins in HRMECs in the 4-HNE treatment group, PSF+4-HNE group and LY294002+4-HNE+PSF group were 0.08±0.01, 0.57±0.04, 0.35±0.09, 0.17±0.03, 1.10±0.06, 0.08±0.11 and 0.80±0.14, 2.50±0.07, 0.50±0.05, respectively. Compared with the PSF+4-HNE group, the relative expression of pAkt, Nrf2, and HO-1 proteins in the LY294002+4-HNE+PSF group decreased significantly, with significant differences ( t=17.342, 16.813, 18.794; P<0.001). Conclusion:PSF upregulates the expression of HO-1 by activating the phosphatidylinositol 3 kinase/Akt pathway and inhibits cell proliferation, migration, and lumen formation induced by low concentrations of 4-HNE.
RESUMEN
Objective:To explore the effect of bone morphogenetic protein 4 (BMP4) on the glycolysis level of human retinal microvascular endothelial cells (hRMECs).Methods:A experimental study. hRMECs cultured in vitro were divided into normal group, 4-hydroxynonenal (HNE) group (4-HNE group) and 4-HNE+BMP4 treatment group (BMP4 group). 4-HNE group cell culture medium was added with 10 μmmol/L 4-HNE; BMP4 group cell culture medium was added with recombinant human BMP4 100 ng/ml after 6 h stimulation with 10 μmol/L 4-HNE. The levels of intracellular reactive oxygen species (ROS) were detected by flow cytometry. The effect of 4-HNE on the viability of cells was detected by thiazole blue colorimetry. Cell scratch test and Transwell cell method were used to determine the effect of 4-HNE on cell migration. The relative expression of BMP4 and SMAD9 mRNA and protein in normal group and 4-HNE group were detected by realtime quantitative polymerase chain reaction and Western blot. Seahorse XFe96 cell energy metabolism analyzer was used to determine the level of intracellular glycolysis metabolism in normal group, 4-HNE group and BMP4 group. One-way analysis of variance was used for comparison between groups.Results:The ROS levels in hRMECs of normal group, 4-HNE group and BMP4 group were 21±1, 815±5, 810±7, respectively. Compared with the normal group, the levels of ROS in the 4-HNE group and the BMP4 group were significantly increased, and the difference was statistically significant ( F=53.40, 50.30; P<0.001). The cell viability in the normal group and 4-HNE group was 1.05±0.05 and 1.28±0.05, respectively; the migration rates were (0.148±0.005)%, (0.376±0.015)%; the number of cells passing through the pores were 109.0±9.6, 318.0±6.4, respectively. Compared with the normal group, the 4-HNE group had significantly higher cell viability, cell migration rate, and the number of cells passing through the pores, and the differences were statistically significant ( F=54.35, 52.84, 84.35; P<0.05). The relative expression levels of BMP4 and SMAD9 mRNA in the cells of the 4-HEN group were 1.680±0.039 and 1.760±0.011, respectively; compared with the normal group, the difference was statistically significant ( F=53.66, 83.54; P<0.05). The relative expression levels of BMP4 and SMAD9 proteins in the cells of the normal group and 4-HEN group were 0.620±0.045, 0.860±0.190, 0.166±0.049, 0.309±0.038, respectively; compared with the normal group, the differences were statistically significant ( F=24.87, 53.84; P<0.05). The levels of intracellular glycolysis, glycolytic capacity and glycolytic reserve in normal group, 4-HNE group and BMP4 group were 1.21±0.12, 2.84±0.24, 1.78±0.36, 2.59±0.11, 5.34±0.32, 2.78±0.45 and 2.64±0.13, 5.20±0.28, 2.66±0.33. Compared with the normal group, the differences were statistically significant (4-HNE group: F=86.34, 69.75, 58.45; P<0.001; BMP4 group: F=56.87, 59.35, 58.35; P<0.05). There was no significant difference in intracellular glycolysis, glycolysis capacity and glycolysis reserve level between 4-HNE group and BMP4 group ( F=48.32, 56.33, 55.01; P>0.05). Conclusion:BMP4 induces the proliferation and migration of hRMECs through glycolysis.
RESUMEN
Objective To investigate the effect of the overexpression of Krüppel-like factor 6 (KLF6)towards the apoptosis of human lens epithelial cells (HLECs) induced by ultraviolet B (UVB) radiation.Methods The eukaryotic expression plasmid pEGFP-C2-KLF6 which was successfully constructed were transfected into HLECs,followed by the detection of KLF6 level by using Western blot,and then companied by UVB stimulation.Cell viability was measured by methyl thiazolyl tetrazolium (MTT) assay.The morphology of the cells was observed by using hematoxylin-eosin staining method.The cell damage was examined by Live/Dead staining.The apoptotic markers bax and bcl-2 were detected by Western blot.Quantitative apoptotic levels were measured with the apoptosis detection kit;the expression level of reactive oxygen species (ROS) was analyzed by DCFH-DA probe.Results The cell viability of the 0.5 μg transfection group and the 1.0 μg transfection group was significantly lower than that of the blank vector control group (both at P<0.05).In high KLF6 expression group,the cells were sparse,long and narrow in size and shape,and the cytoplasm was concentrated.The cells in the normal control group were green living cells with stable morphology and even quantity.The number of red dead cells was increased significantly in the KLF6 highexpression group.After UVB irradiation,the apoptosis value,relative bax expression,bax/bcl-2 ratio and ROS expression of HLECs cells in the KLF6 high-expression group were all higher than those in the blank vector control group,with statistically significant differences between them (all at P<0.05).Conclusions Overexpression of KLF6 can exacerbate apoptosis of HLECs caused by UVB,by regulating the expression of apoptosis-related proteins and promoting the accumulation of ROS in the endoplasmic reticulum.Down-regulation of KLF6 expression by biological tools may play a protective role on LECs to a certain extent.
RESUMEN
Objective To investigate the regulating effects of Krüppel-like factor 6 (KLF6) on the apoptosis of human lens epithelial cells (HLECs) by activating transcription factor 4 (ATF4) pathway and explore the bio-molecular mechanism of KLF6/ATF4-induced HLECs apoptosis.Methods HLECs (HLE-B3) were cultured using high glucose DMEM medium.The eukaryotic expression plasmid pEGFP-C2-ATF4 was transfected into the cells by liposome 2000 in the ATF4-transfected group,and pEGFP-C2 was transfected in the empty plasmid group.Then the cells were exposed to 20 mJ/cm2 ultraviolet ray B (UVB) for 200 seconds,The morphological changes of the cells were observed by hematoxylin & eosin staining and Hoechst33258 fluorescein staining.Cultured cells were transfected using pEGFP-C2-KLF6 and pEGFP-C2 plasmid and pSilencer-KLF6 (siKLF6) and pSilencer plasmid,respectively,and the expression of ATF4 protein in the cells was detected by Western blot assay.Culture cells were divided into four groups.pEGFP-C2 and pSilencer plasmids were co-transfected into the cells in the empty plasmid group;pEGFP-C2-KLF6 and pSilencer empty plasmid were co-transfected into the cells of the KLF6 + pSilencer group;pEGFP-C2 empty plasmid and pSilencer-ATF4 were co-transfected in the cells of the siATF4 + pEGFP-C2 group;pEGFP-C2-KLF6 and pSilencer-ATF4 plasmids were co-transfected in the cells of the KLF6 + siATF4 group,and then the cells were exposed to UVB.The apoptosis of the cells were detected by ELISA assay.Results Cultured cells grew well in the normal control group with the uniform morphology and regular arrangement.The karyopyknosis,karyorrhexis and enlargement of intercellular space were found in the cells exposed to UVB.In the ATF4 transfected group,the number of cells was decreased.The relative expression level of the ATF4 protein in the cells was 0.99±0.06 and 0.13±0.02 in the UVB+ATF4 transfected group and UVB+pEGFP-C2 plasmid group,respectively,with a significant difference between them (t =23.13,P<0.01).The relative expression levels of KLF6 and ATF4 proteins in the KLF6 transfected group were higher than those in the empty plasmid group,and the relative expression levels of KLF6 and ATF4 proteins in the siKLF6 group were significantly lower than those in the empty plasmid group (all at P<0.01).ELISA assay showed that the apoptotic rate in the ATF4 transfected group was 1.37± 0.11,which was significantly higher than 0.31 ±0.11 in the normal control group (t =8.034,P =0.001);the apoptotic rate of the cells was increased in the KLF6+pSilencer group and decreased in the siATF4+pEGFP-C2 group in comparison with the empty plasmid group (P<0.01,P=0.02).In addition,the apoptotic rate in the KLF6+ siATF4 group was remarkably lower than that in the KLF6 + pSilencer group (P< 0.01).Conclusions KLF6 promotes the apoptosis of HLECs induced by UVB radiation.Silence of ATF4 gene reduces the apoptotic rate of the cells.ATF4 is probably a target factor in the regulating oathwav of KLF6 to apoptosis.