Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Añadir filtros








Intervalo de año
1.
Acta Physiologica Sinica ; (6): 35-41, 2021.
Artículo en Chino | WPRIM | ID: wpr-878233

RESUMEN

Fentanyl as a synthetic opioid works by binding to the mu-opioid receptor (MOR) in brain areas to generate analgesia, sedation and reward related behaviors. As we know, cerebellum is not only involved in sensory perception, motor coordination, motor learning and precise control of autonomous movement, but also important for the mood regulation, cognition, learning and memory. Previous studies have shown that functional MORs are widely distributed in the cerebellum, and the role of MOR activation in cerebellum has not been reported. The aim of the present study was to investigate the effects of fentanyl on air-puff stimulus-evoked field potential response in the cerebellar molecular layer using in vivo electrophysiology in mice. The results showed that perfusion of 5 μmol/L fentanyl on the cerebellar surface significantly inhibited the amplitude, half width and area under the curve (AUC) of sensory stimulation-evoked inhibitory response P1 in the molecular layer. The half-inhibitory concentration (IC


Asunto(s)
Animales , Ratones , Cerebelo , Potenciales Evocados , Fentanilo/farmacología , Interneuronas , Estimulación Física
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA