Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Añadir filtros








Intervalo de año
1.
Artículo en Inglés | WPRIM | ID: wpr-741415

RESUMEN

OBJECTIVE: To compare conventional sensitivity encoding (SENSE) to compressed sensing plus SENSE (CS) for high-resolution magnetic resonance imaging (HR-MRI) of intracranial and extracranial arteries. MATERIALS AND METHODS: HR-MRI was performed in 14 healthy volunteers. Three-dimensional T1-weighted imaging (T1WI) and proton density-weighted imaging (PD) were acquired using CS or SENSE under the same total acceleration factors (AF(t))-5.5, 6.8, and 9.7 for T1WI and 3.2, 4.0, and 5.8 for PD-to achieve reduced scanning times in comparison with the original imaging sequence (SENSE T1WI, AF(t) 3.5; SENSE PD, AF(t) 2.0) using the 3-tesla system. Two neuroradiologists measured signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), and used visual scoring systems to assess image quality. Acceptable imaging was defined as a visual score ≥ 2. Repeated measures analysis of variance and Cochran's Q test were performed. RESULTS: CS yielded better image quality and vessel delineation than SENSE in T1WI with AF(t) of 5.5, 6.8, and 9.7, and in PD with AF(t) of 5.8 (p 0.05). SNR and CNR in CS were higher than they were in SENSE, but lower than they were in the original images (p < 0.05). CS yielded higher proportions of acceptable imaging than SENSE (CS T1WI with AF(t) of 6.8 and PD with AF(t) of 5.8; p < 0.0167). CONCLUSION: CS is superior to SENSE, and may be a reliable acceleration method for vessel HR-MRI using AF(t) of 5.5 for T1WI, and 3.2 and 4.0 for PD.


Asunto(s)
Aceleración , Arterias , Voluntarios Sanos , Imagen por Resonancia Magnética , Métodos , Protones , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA