Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
The Korean Journal of Orthodontics ; : 317-327, 2023.
Artículo en Inglés | WPRIM | ID: wpr-1003098

RESUMEN

Objective@#This study aimed to evaluate the association between low tongue position (LTP) and the volume and dimensions of the nasopharyngeal, retropalatal, retroglossal, and hypopharyngeal segments of the upper airway. @*Methods@#A total of 194 subjects, including 91 males and 103 females were divided into a resting tongue position (RTP) group and a LTP group according to their tongue position. Subjects in the LTP group were divided into four subgroups (Q1, Q2, Q3, and Q4) according to the intraoral space volume. The 3D slicer software was used to measure the volume and minimum and average cross-sectional areas of each group. Airway differences between the RTP and LTP groups were analyzed to explore the association between tongue position and the upper airway. @*Results@#No significant differences were found in the airway dimensions between the RTP and LTP groups. For both retropalatal and retroglossal segments, the volume and average cross-sectional area were significantly greater in the patients with extremely low tongue position. Regression analysis showed that the retroglossal airway dimensions were positively correlated with the intraoral space volume and negatively correlated with A point-nasion-B point and palatal plane to mandibular plane. Males generally had larger retroglossal and hypopharyngeal airways than females. @*Conclusions@#Tongue position did not significantly influence upper airway volume or dimensions, except in the extremely LTP subgroup.

2.
Journal of Korean Dental Science ; : 19-30, 2022.
Artículo en Inglés | WPRIM | ID: wpr-938002

RESUMEN

Purpose@#The purpose of the study was to assess the validity of three-dimensional (3D) facial scan taken with facial scanner and digital photo wrapping on the cone-beam computed tomography (CBCT). @*Materials and Methods@#Twenty-five patients had their CBCT scan, two-dimensional (2D) standardized frontal photographs and 3D facial scan obtained on the same day. The facial scans were taken with a facial scanner in an upright position. The 2D standardized frontal photographs were taken at a fixed distance from patients using a camera fixed to a cephalometric apparatus. The 2D integrated facial models were created using digital photo wrapping of frontal photographs on the corresponding CBCT images. The 3D integrated facial models were created using the integration process of 3D facial scans on the CBCT images. On the integrated facial models, sixteen soft tissue landmarks were identified, and the vertical, horizontal, oblique and angular distances between soft tissue landmarks were compared among the 2D facial models and 3D facial models, and CBCT images.Result: The results showed no significant differences of linear and angular measurements among CBCT images, 2D and 3D facial models except for Se-Sn vertical linear measurement which showed significant difference for the 3D facial models. The Bland–Altman plots showed that all measurements were within the limit of agreement. For 3D facial model, all Bland–Altman plots showed that systematic bias was less than 2.0 mm and 2.0° except for Se-Sn linear vertical measurement. For 2D facial model, the Bland-Altman plots of 6 out of 11 of the angular measurements showed systematic bias of more than 2.0°. @*Conclusion@#The facial scan taken with facial scanner showed a clinically acceptable performance. The digital 2D photo wrapping has limitations in clinical use compared to 3D facial scans.

3.
The Korean Journal of Orthodontics ; : 41-48, 2019.
Artículo en Inglés | WPRIM | ID: wpr-719313

RESUMEN

OBJECTIVE: This in-vivo study aimed to compare landmark identification errors in anteroposterior (AP) and posteroanterior (PA) cephalograms generated from cone-beam computed tomography (CBCT) scan data in order to examine the feasibility of using AP cephalograms in clinical settings. METHODS: AP and PA cephalograms were generated from CBCT scans obtained from 25 adults. Four experienced and four inexperienced examiners were selected depending on their experience levels in analyzing frontal cephalograms. They identified six cephalometric landmarks on AP and PA cephalograms. The errors incurred in positioning the cephalometric landmarks on the AP and PA cephalograms were calculated by using the straight-line distance and the horizontal and vertical components as parameters. RESULTS: Comparison of the landmark identification errors in CBCT-generated frontal cephalograms revealed that landmark-dependent differences were greater than experience- or projection-dependent differences. Comparisons of landmark identification errors in the horizontal and vertical directions revealed larger errors in identification of the crista galli and anterior nasal spine in the vertical direction and the menton in the horizontal direction, in comparison with the other landmarks. Comparison of landmark identification errors between the AP and PA projections in CBCT-generated images revealed a slightly higher error rate in the AP projections, with no inter-examiner differences. Statistical testing of the differences in landmark identification errors between AP and PA cephalograms showed no statistically significant differences for all landmarks. CONCLUSIONS: The reproducibility of CBCT-generated AP cephalograms is comparable to that of PA cephalograms; therefore, AP cephalograms can be generated reliably from CBCT scan data in clinical settings.


Asunto(s)
Adulto , Humanos , Tomografía Computarizada de Haz Cónico , Columna Vertebral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA