Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros








Intervalo de año
1.
Immune Network ; : e23-2023.
Artículo en Inglés | WPRIM | ID: wpr-1040797

RESUMEN

Inflammation is a series of host defense processes in response to microbial infection and tissue injury. Inflammatory processes frequently cause extracellular acidification in the inflamed region through increased glycolysis and lactate secretion. Therefore, the immune cells infiltrating the inflamed region encounter an acidic microenvironment. Extracellular acidosis can modulate the innate immune response of macrophages; however, its role for inflammasome signaling still remains elusive. In the present study, we demonstrated that macrophages exposed to an acidic microenvironment exhibited enhanced caspase-1 processing and IL-1β secretion compared with those under physiological pH. Moreover, exposure to an acidic pH increased the ability of macrophages to assemble the NLR family pyrin domain containing 3 (NLRP3) inflammasome in response to an NLRP3 agonist.This acidosis-mediated augmentation of NLRP3 inflammasome activation occurred in bone marrow-derived macrophages but not in bone marrow-derived neutrophils. Notably, exposure to an acidic environment caused a reduction in the intracellular pH of macrophages but not neutrophils. Concordantly, macrophages, but not neutrophils, exhibited NLRP3 agonist-mediated translocation of chloride intracellular channel protein 1 (CLIC1) into their plasma membranes under an acidic microenvironment. Collectively, our results demonstrate that extracellular acidosis during inflammation can increase the sensitivity of NLRP3 inflammasome formation and activation in a CLIC1-dependent manner. Thus, CLIC1 may be a potential therapeutic target for NLRP3 inflammasome-mediated pathological conditions.

2.
Immune Network ; : 40-2019.
Artículo en Inglés | WPRIM | ID: wpr-785821

RESUMEN

Zika virus (ZIKV) is a mosquito-borne flavivirus associated with severe neurological disorders including Guillain-Barré syndrome and microcephaly. The host innate immune responses against ZIKV infection are essential for protection; however, ZIKV has evolved strategies to evade and antagonize antiviral responses via its nonstructural (NS) proteins. Here, we demonstrated that ZIKV infection unexpectedly inhibits NLRP3-dependent inflammasome activation in bone marrow-derived macrophages and mixed glial cells from mouse brain. ZIKV infection led to increased transcript levels of proinflammatory cytokines such as IL-1β and IL-6 via activating NF-κB signaling. However, ZIKV infection failed to trigger the secretion of active caspase-1 and IL-1β from macrophages and glial cells even in the presence of LPS priming or ATP costimulation. Intriguingly, ZIKV infection significantly attenuated NLRP3-dependent, but not absent in melanoma 2-dependent caspase-1 activation and IL-1β secretion from both cells. ZIKV infection further blocked apoptosis-associated speck-like protein containing a caspase recruitment domain oligomerization in LPS/ATP-stimulated macrophages. Interestingly, expression of ZIKV NS3 protein reduced NLRP3-mediated caspase-1 activation and IL-1β secretion in macrophages, whereas NS1 and NS5 proteins showed no effects. Furthermore, NLRP3 was found to be degraded by the overexpression of ZIKV NS3 in 293T cells. Collectively, these results indicate that ZIKV evades host NLRP3 inflammasome-mediated innate immune responses in macrophages and glial cells; this may facilitate ZIKV's ability to enhance the replication and dissemination in these cells.


Asunto(s)
Animales , Ratones , Adenosina Trifosfato , Encéfalo , Caspasa 1 , Citocinas , Flavivirus , Síndrome de Guillain-Barré , Células HEK293 , Inmunidad Innata , Inflamasomas , Interleucina-6 , Macrófagos , Melanoma , Microcefalia , Enfermedades del Sistema Nervioso , Neuroglía , Virus Zika
3.
Immune Network ; : 141-147, 2013.
Artículo en Inglés | WPRIM | ID: wpr-77567

RESUMEN

Hypoxia has been shown to promote inflammation, including the release of proinflammatory cytokines, but it is poorly investigated how hypoxia directly affects inflammasome signaling pathways. To explore whether hypoxic stress modulates inflammasome activity, we examined the effect of cobalt chloride (CoCl2)-induced hypoxia on caspase-1 activation in primary mixed glial cultures of the neonatal mouse brain. Unexpectedly, hypoxia induced by oxygen-glucose deprivation or CoCl2 treatment failed to activate caspase-1 in microglial BV-2 cells and primary mixed glial cultures. Of particular interest, CoCl2-induced hypoxic condition considerably inhibited NLRP3-dependent caspase-1 activation in mixed glial cells, but not in bone marrow-derived macrophages. CoCl2-mediated inhibition of NLRP3 inflammasome activity was also observed in the isolated brain microglial cells, but CoCl2 did not affect poly dA:dT-triggered AIM2 inflammasome activity in mixed glial cells. Our results collectively demonstrate that CoCl2-induced hypoxia may negatively regulate NLRP3 inflammasome signaling in brain glial cells, but its physiological significance remains to be determined.


Asunto(s)
Animales , Ratones , Hipoxia , Encéfalo , Cobalto , Citocinas , Inflamación , Macrófagos , Neuroglía
4.
Immune Network ; : 284-290, 2012.
Artículo en Inglés | WPRIM | ID: wpr-20063

RESUMEN

Innate immune cells sense and respond to the cytoplasmic infection of bacterial pathogens through NLRP3, NLRC4 or AIM2 inflammasome depending on the unique molecular pattern of invading pathogens. The infection of flagellin- or type III secretion system (T3SS)-containing Gram-negative bacteria such as Salmonella enterica serovar Typhimurium (S. typhimurium) or Pseudomonas aeruginosa (P. aeruginosa) triggers NLRC4-dependent caspase-1 activation leading to the secretion of proinflammatory cytokines such as interleukin-1-beta (IL-1beta) and IL-18. Previous studies have shown that apoptosis-associated speck-like protein containing a CARD (ASC) is also required for Salmonella-induced caspase-1 activation, but it is still unclear how ASC contributes to the activation of NLRC4 inflammasome in response to S. typhimurium infection. In this study, we demonstrate that S. typhimurium triggers the formation of ASC oligomer in a potassium depletion-independent manner as determined by in vitro crosslinking and in situ fluorescence imaging. Remarkably, inhibition of potassium efflux failed to block Salmonella-promoted caspase-1 activation and macrophage cell death. These results collectively suggest that ASC is substantially oligomerized to facilitate the activation of caspase-1 in response to S. typhimurium infection. Contrary to NLRP3 inflammasome, intracellular potassium depletion is not critical for NLRC4 inflammasome signaling by S. typhimurium.


Asunto(s)
Muerte Celular , Citocinas , Citoplasma , Bacterias Gramnegativas , Interleucina-18 , Macrófagos , Imagen Óptica , Potasio , Pseudomonas aeruginosa , Salmonella , Salmonella enterica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA