Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Biomolecules & Therapeutics ; : 275-282, 2015.
Artículo en Inglés | WPRIM | ID: wpr-178034

RESUMEN

In the present study, we synthesized a series of novel 7-methoxy-N-(substituted phenyl)benzofuran-2-carboxamide derivatives in moderate to good yields and evaluated their neuroprotective and antioxidant activities using primary cultured rat cortical neuronal cells and in vitro cell-free bioassays. Based on our primary screening data with eighteen synthesized derivatives, nine compounds (1a, 1c, 1f, 1i, 1j, 1l, 1p, 1q and 1r) exhibiting considerable protection against the NMDA-induced excitotoxic neuronal cell damage at the concentration of 100 muM were selected for further evaluation. Among the selected derivatives, compound 1f (with -CH3 substitution at R2 position) exhibited the most potent and efficacious neuroprotective action against the NMDA-induced excitotoxicity. Its neuroprotective effect was almost comparable to that of memantine, a well-known NMDA antagonist, at 30 muM concentration. In addition to 1f, compound 1j (with -OH substitution at R3 position) also showed marked anti-excitotoxic effects at both 100 and 300 muM concentrations. These findings suggest that -CH3 substitution at R2 position and, to a lesser degree, -OH substitution at R3 position may be important for exhibiting neuroprotective action against excitotoxic damage. Compound 1j was also found to scavenge 1,1-diphenyl-2-picrylhydrazyl radicals and inhibit in vitro lipid peroxidation in rat brain homogenate in moderate and appreciable degrees. Taken together, our structure-activity relationship studies suggest that the compound with -CH3 substitution at R2 and -OH substitution at R3 positions of the benzofuran moiety might serve as the lead exhibiting potent anti-excitotoxic, ROS scavenging, and antioxidant activities. Further synthesis and evaluation will be necessary to confirm this possibility.


Asunto(s)
Animales , Ratas , Antioxidantes , Bioensayo , Encéfalo , Peroxidación de Lípido , Tamizaje Masivo , Memantina , N-Metilaspartato , Neuronas , Fármacos Neuroprotectores , Especies Reactivas de Oxígeno , Relación Estructura-Actividad
2.
The Korean Journal of Physiology and Pharmacology ; : 93-98, 2001.
Artículo en Inglés | WPRIM | ID: wpr-728229

RESUMEN

The precise mechanism of set-point regulation in hypothalamus was not elucidated. Nitric oxide synthases (NOS) were detected in hypothalamus, however, the roles of NO in hypothalamus was not fully studied. So, we tested the effects of NO on body temperature because preoptic-anterior hypothalamus was known as the presumptive primary fever-producing site. NO donor sodium nitroprusside (SNP, 4 nmol, i.c.v.) elicited marked febrile response, and this febrile response was completely blocked by indomethacin (a cyclooxygenase inhibitor). But, ODQ (selective guanylate cyclase inhibitor, 50 microgram, i.c.v.) did not inhibit fever induced by SNP. The cyclic GMP analogue dibutyryl-cGMP (100 microgram, i.c.v.) induced significant pyreses, which is blocked by indomethacin. NG-nitro-L-arginine methyl ester (L-NAME, non selective NOS inhibitor) inhibited fever induced by interleukin-1 beta (IL-1 beta, 10 ng, i.c.v.), one of endogenous pyrogens. These results indicate that NO may have an important role, not related to stimulation of soluble guanylate cyclase, in the signal pathway of thermoregulation in hypothalamus.


Asunto(s)
Humanos , Temperatura Corporal , Regulación de la Temperatura Corporal , Sistema Nervioso Central , GMP Cíclico , Fiebre , Guanilato Ciclasa , Hipotálamo , Indometacina , Interleucina-1beta , NG-Nitroarginina Metil Éster , Óxido Nítrico , Nitroprusiato , Prostaglandina-Endoperóxido Sintasas , Pirógenos , Transducción de Señal , Donantes de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA