Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Journal of Biotechnology ; (12): 347-351, 2007.
Artículo en Chino | WPRIM | ID: wpr-328025

RESUMEN

In order to optimize the conditions of construction BAC library, the transformation efficiency of E. coli DH10B was studied in this paper. Our data prove much higher competence of electroporation (reaches 2.19 x 10(10) cfu/microg pUC19 DNA) when harvesting the cells between an OD550 of 0.7 - 0.8. Five different electric field strength (from 9 kV/cm to 25 kV/cm) and three different sized plasmid vector DNAs including pUC19 DNA, pECBAC1 DNA and pCLD04541 DNA, as well as three bacterial artificial chromosomes (BACs) ranging from 40 to 190 kb and their mixture were used to discover the transformation efficiency changes under various conditions. Our data show maximum transformation efficiency and optimal electric field strength of plasmid DNAs drop dramatically with increasing size of the DNA. Molecules of 190 kb transform more than 50-fold less well, on a molar basis, than molecules of 40 kb. And the optimal voltage gradient is strongly dependent on the different sized molecules, for instance, pUC19 reaches the highest transformation efficiency at 21 kV/cm, while the 180 kb BAC DNA gets its best efficiency at 13 kV/cm. This paper demonstrates that conditions may be selected which increase the average size of BAC clones generated by electroporation and could be widely applied in large-insert genome library construction.


Asunto(s)
Cromosomas Artificiales Bacterianos , Genética , ADN Bacteriano , Química , Genética , Electroporación , Métodos , Escherichia coli , Genética , Peso Molecular , Plásmidos , Genética , Transformación Genética
2.
Journal of Zhejiang University. Science. B ; (12): 467-474, 2006.
Artículo en Inglés | WPRIM | ID: wpr-251900

RESUMEN

The ascidian Ciona intestinalis is a model organism of developmental and evolutionary biology and may provide crucial clues concerning two fundamental matters, namely, how chordates originated from the putative deuterostome ancestor and how advanced chordates originated from the simplest chordates. In this paper, a whole-life-span culture of C. intestinalis was conducted. Fed with the diet combination of dry Spirulina, egg yolk, Dicrateria sp., edible yeast and weaning diet for shrimp, C. intestinalis grew up to average 59 mm and matured after 60 d cultivation. This culture process could be repeated using the artificially cultured mature ascidians as material. When the fertilized eggs were maintained under 10, 15, 20, 25 degrees C, they hatched within 30 h, 22 h, 16 h and 12 h 50 min respectively experiencing cleavage, blastulation, gastrulation, neurulation, tailbud stage and tadpole stage. The tadpole larvae were characterized as typical but simplified chordates because of their dorsal nerve cord, notochord and primordial brain. After 8 - 24 h freely swimming, the tadpole larvae settled on the substrates and metamorphosized within 1- 2 d into filter feeding sessile juvenile ascidians. In addition, unfertilized eggs were successfully dechorionated in filtered seawater containing 1% Tripsin, 0.25% EDTA at pH of 10.5 within 40 min. After fertilization, the dechorionated eggs developed well and hatched at normal hatching rate. In conclusion, this paper presented feasible methodology for rearing the tadpole larvae of C. intestinalis into sexual maturity under controlled conditions and detailed observations on the embryogenesis of the laboratory cultured ascidians, which will facilitate developmental and genetic research using this model system.


Asunto(s)
Animales , Femenino , Masculino , Ciona intestinalis , Desarrollo Embrionario , Fisiología , Metamorfosis Biológica , Fisiología , Cigoto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA