Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Journal of Biotechnology ; (12): 538-544, 2003.
Artículo en Chino | WPRIM | ID: wpr-259152

RESUMEN

Vip3A, a novel insecticidal protein, is secreted by Bacillus thuringiensis (Bt) during vegetative growth. Vip3A protein possesses insecticidal activity against a wild spectrum of lepidopteran insect larvae. Since the first cloning of vip3A gene from Bt, many other vip3A genes have been isolated. To investigate vip3A genes contribution to Bt and reflect the revolution relationships, the strains containing vip3A genes were screened and gene similarity was analyzed. 114 wild-type Bacillus thuringiensis (Bt) strains isolated from different regions and 41 standard Bt strains from the Institute of Pasteur were screened for the vip3A genes using PCR amplification. 39 strains including B. thuringiensis subsp. kurstaki (Btk) HD-1 were found to contain the vip3A genes. Because acrystallerous strain Cry- B derived from Btk HD-1 was proved not to contain vip3A gene, it suppose that the vip3A gene may be located at the plasmids. Vip3A proteins expressed in these strains were detected with polyclonal antibody by Western blot and 4 strains among them were shown not to express the Vip3A proteins. The vip3A genes amplified from wild-type Bacillus thuringiensis strains S101 and 611 with different levels of activity against lepidopteran insect larvae were cloned into pGEM-T Easy vector. Alignment of these 2 putative Vip3A proteins with 6 others (Vip3A (a), Vip3A(b), Vip3A-S, Vip3A-S184, Vip83 and Vip3V) in the GenBank data base and 2 reported Vip3A proteins (Vip14 and Vip15) showed that vip3A genes are highly conservative. The plasmids pOTP-S101 and pOTP-611 were constructed by in- serting 2 vip3A genes (vip3A-S101 and vip3A-611) into the expression vector pQE30 respectively and were transformed into E. coli M15. E. coli M15 cells harboring the pOTP plasmids were induced with 1 mmol/L IPTG to express 89 kDa protein. Experiments showed that the level of soluble proteins of Vip3A-S101 in E. coli M15[pOTP-S101] and Vip3A-611 in E. coli M15 [pOTP-611] were about 48% and 35% respectively. Bioassay showed that each of these Vip3A proteins had similar toxicity against neonate Spodoptera litura larvae, indicating that some amino acids change had little effect on the insecticidal activity of proteins. Although vip3A genes are conservative, the unknown insecticidal spectrum is still to be brought out. Vip3A genes can be used for the construction of the Bt engineered strains and transgenic plants. In addition, vip3A genes are excellent candidates for delay of the pest resistance due to the difference of the action model from that of Bt delta-endotoxins.


Asunto(s)
Animales , Bacillus thuringiensis , Genética , Metabolismo , Proteínas Bacterianas , Genética , Metabolismo , Toxicidad , Western Blotting , Electroforesis en Gel de Poliacrilamida , Insecticidas , Metabolismo , Toxicidad , Larva , Modelos Biológicos , Reacción en Cadena de la Polimerasa , Spodoptera , Pruebas de Toxicidad
2.
Chinese Journal of Biotechnology ; (12): 566-571, 2003.
Artículo en Chino | WPRIM | ID: wpr-259147

RESUMEN

The Cry1Ab differs most significantly from the other related ICPs by its absence of a carboxyl terminus of 28 amino acids including four cysteines; consequently it is less stable. We report that the helper protein P20 plays a role in the expression and crystallization of Cry1Ab. Three Cry1Ab expression plasmids pT1B, pP1B, and pDP1B, were constructed based on the shuttle vector pHT3101. The vector pT1B does not contain the p20 gene, pP1B carries p20, and pDP1B contains p20 with cry1A(c) promoter. Transformants were obtained by electroporating the plasmids into Bacillus thuringiensis acrystalliferous mutant CryB. Western blot demonstrated that crylAb was expressed as a 130 kD protein in all the transformants, and some of the protein was partially degraded into a 60 kD peptide. Quantitative protein analysis indicated that the amount of the 130 kD protein varied in the transformants and was in the ratio of 1:1.4:1.5 for PT1B, pP1B and pDP1B respectively. For the 60 kD proteins, the ratio was 1:1.1:1.6. Microscopic examination revealed that the size of the typical pyramidal crystals in the three transformants was in the order of T1B < P1B < DP1B. Bioassay showed that T1B, P1B and DP1B were all toxic to the larvae of Helicoverpa armigera with similar LC50. This study suggested that P20 plays a role in the expression and crystallization of Cry1Ab.


Asunto(s)
Animales , Bacillus thuringiensis , Genética , Metabolismo , Proteínas Bacterianas , Genética , Metabolismo , Farmacología , Bioensayo , Métodos , Western Blotting , Electroporación , Endotoxinas , Genética , Metabolismo , Farmacología , Proteínas Hemolisinas , Genética , Metabolismo , Farmacología , Microscopía Electrónica de Transmisión , Mariposas Nocturnas , Regiones Promotoras Genéticas , Genética
3.
Chinese Journal of Biotechnology ; (12): 687-692, 2002.
Artículo en Chino | WPRIM | ID: wpr-256137

RESUMEN

The vip3 A gene in a size of 2.3 kb amplified from wild-type Bacillus thuringiensis strain S184 by PCR was cloned into pGEM-T Easy vector and its sequence was analysized by DNASTAR. The plasmid pOTP was constructed by inserting vip3A-S184 gene into the expression vector pQE30 and then was transformed into E. coli M15. E. coli M15 cells harbouring the plasmid pOTP were induced with 1 mmol/L IPTG to express 89 kD protein which was confirmed to be Vip3A-S184 by Western blot. Experiments showed that about 19% of Vip3A-S184 proteins were soluble, and others were insoluble proteins and formed inclusion bodies observed by transmission electron microscopy(TEM). The target protein was purified under the native condition and the polyclonal antibody was prepared by immunizing rabbits. The polyclonal antibody was used to detect Vip3A proteins expressed in Bacillus thuringiensis. Bioassay showed that Vip3A-S184 showed a high toxicity against 3 tested insect larvae including Spodoptera exigua, Spodoptera litura and Helicoverpa armigera.


Asunto(s)
Animales , Bacillus thuringiensis , Genética , Proteínas Bacterianas , Genética , Farmacología , Secuencia de Bases , Clonación Molecular , Escherichia coli , Genética , Insecticidas , Farmacología , Datos de Secuencia Molecular , Control Biológico de Vectores , Proteínas Recombinantes , Farmacología , Spodoptera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA